We study a generalization of the problem of online learning in adversarial linear contextual bandits by incorporating loss functions that belong to a reproducing kernel Hilbert space, which allows for a more flexible modeling of complex decision-making scenarios. We propose a computationally efficient algorithm that makes use of a new optimistically biased estimator for the loss functions and achieves near-optimal regret guarantees under a variety of eigenvalue decay assumptions made on the underlying kernel. Specifically, under the assumption of polynomial eigendecay with exponent $c>1$, the regret is $\widetilde{O}(KT^{\frac{1}{2}(1+\frac{1}{c})})$, where $T$ denotes the number of rounds and $K$ the number of actions. Furthermore, when the eigendecay follows an exponential pattern, we achieve an even tighter regret bound of $\widetilde{O}(\sqrt{T})$. These rates match the lower bounds in all special cases where lower bounds are known at all, and match the best known upper bounds available for the more well-studied stochastic counterpart of our problem.
Federated learning (FL) aims to collaboratively train a shared model across multiple clients without transmitting their local data. Data heterogeneity is a critical challenge in realistic FL settings, as it causes significant performance deterioration due to discrepancies in optimization among local models. In this work, we focus on label distribution skew, a common scenario in data heterogeneity, where the data label categories are imbalanced on each client. To address this issue, we propose FedBalance, which corrects the optimization bias among local models by calibrating their logits. Specifically, we introduce an extra private weak learner on the client side, which forms an ensemble model with the local model. By fusing the logits of the two models, the private weak learner can capture the variance of different data, regardless of their category. Therefore, the optimization direction of local models can be improved by increasing the penalty for misclassifying minority classes and reducing the attention to majority classes, resulting in a better global model. Extensive experiments show that our method can gain 13\% higher average accuracy compared with state-of-the-art methods.
Deep learning methods have demonstrated outstanding performances on classification and regression tasks on homogeneous data types (e.g., image, audio, and text data). However, tabular data still pose a challenge, with classic machine learning approaches being often computationally cheaper and equally effective than increasingly complex deep learning architectures. The challenge arises from the fact that, in tabular data, the correlation among features is weaker than the one from spatial or semantic relationships in images or natural language, and the dependency structures need to be modeled without any prior information. In this work, we propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations to gain relational information from sparse tabular inputs. The resulting model leverages the power of convolution and is centered on a limited number of concepts from network topology to guarantee: (i) a data-centric and deterministic building pipeline; (ii) a high level of interpretability over the inference process; and (iii) an adequate room for scalability. We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models, demonstrating that our approach reaches state-of-the-art performances on these challenging datasets. The code to reproduce all our experiments is provided at //github.com/FinancialComputingUCL/HomologicalCNN.
Neural ordinary differential equations (NODEs) have been proven useful for learning non-linear dynamics of arbitrary trajectories. However, current NODE methods capture variations across trajectories only via the initial state value or by auto-regressive encoder updates. In this work, we introduce Modulated Neural ODEs (MoNODEs), a novel framework that sets apart dynamics states from underlying static factors of variation and improves the existing NODE methods. In particular, we introduce $\textit{time-invariant modulator variables}$ that are learned from the data. We incorporate our proposed framework into four existing NODE variants. We test MoNODE on oscillating systems, videos and human walking trajectories, where each trajectory has trajectory-specific modulation. Our framework consistently improves the existing model ability to generalize to new dynamic parameterizations and to perform far-horizon forecasting. In addition, we verify that the proposed modulator variables are informative of the true unknown factors of variation as measured by $R^2$ scores.
We present the framework of slowly varying regression under sparsity, allowing sparse regression models to exhibit slow and sparse variations. The problem of parameter estimation is formulated as a mixed-integer optimization problem. We demonstrate that it can be precisely reformulated as a binary convex optimization problem through a novel relaxation technique. This relaxation involves a new equality on Moore-Penrose inverses, convexifying the non-convex objective function while matching the original objective on all feasible binary points. This enables us to efficiently solve the problem to provable optimality using a cutting plane-type algorithm. We develop a highly optimized implementation of this algorithm, substantially improving upon the asymptotic computational complexity of a straightforward implementation. Additionally, we propose a fast heuristic method that guarantees a feasible solution and, as empirically illustrated, produces high-quality warm-start solutions for the binary optimization problem. To tune the framework's hyperparameters, we suggest a practical procedure relying on binary search that, under certain assumptions, is guaranteed to recover the true model parameters. On both synthetic and real-world datasets, we demonstrate that the resulting algorithm outperforms competing formulations in comparable times across various metrics, including estimation accuracy, predictive power, and computational time. The algorithm is highly scalable, allowing us to train models with thousands of parameters. Our implementation is available open-source at //github.com/vvdigalakis/SSVRegression.git.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Graph representation learning is to learn universal node representations that preserve both node attributes and structural information. The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering. When a graph is heterogeneous, the problem becomes more challenging than the homogeneous graph node learning problem. Inspired by the emerging information theoretic-based learning algorithm, in this paper we propose an unsupervised graph neural network Heterogeneous Deep Graph Infomax (HDGI) for heterogeneous graph representation learning. We use the meta-path structure to analyze the connections involving semantics in heterogeneous graphs and utilize graph convolution module and semantic-level attention mechanism to capture local representations. By maximizing local-global mutual information, HDGI effectively learns high-level node representations that can be utilized in downstream graph-related tasks. Experiment results show that HDGI remarkably outperforms state-of-the-art unsupervised graph representation learning methods on both classification and clustering tasks. By feeding the learned representations into a parametric model, such as logistic regression, we even achieve comparable performance in node classification tasks when comparing with state-of-the-art supervised end-to-end GNN models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.