亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce isotonic conditional laws (ICL) which extend the classical notion of conditional laws by the additional requirement that there exists an isotonic relationship between the random variable of interest and the conditioning random object. We show existence and uniqueness of ICL building on conditional expectations given $\sigma$-lattices. ICL corresponds to a classical conditional law if and only if the latter is already isotonic. ICL is motivated from a statistical point of view by showing that ICL emerges equivalently as the minimizer of an expected score where the scoring rule may be taken from a large class comprising the continuous ranked probability score (CRPS). Furthermore, ICL is calibrated in the sense that it is invariant to certain conditioning operations, and the corresponding event probabilities and quantiles are simultaneously optimal with respect to all relevant scoring functions. We develop a new notion of general conditional functionals given $\sigma$-lattices which is of independent interest.

相關內容

We show that confidence intervals for a variance component or proportion, with asymptotically correct uniform coverage probability, can be obtained by inverting certain test-statistics based on the score for the restricted likelihood. The results apply in settings where the variance or proportion is near or at the boundary of the parameter set. Simulations indicate the proposed test-statistics are approximately pivotal and lead to confidence intervals with near-nominal coverage even in small samples. We illustrate our methods' application in spatially-resolved transcriptomics where we compute approximately 15,000 confidence intervals, used for gene ranking, in less than 4 minutes. In the settings we consider, the proposed method is between two and 28,000 times faster than popular alternatives, depending on how many confidence intervals are computed.

Quantized tensor trains (QTTs) have recently emerged as a framework for the numerical discretization of continuous functions, with the potential for widespread applications in numerical analysis. However, the theory of QTT approximation is not fully understood. In this work, we advance this theory from the point of view of multiscale polynomial interpolation. This perspective clarifies why QTT ranks decay with increasing depth, quantitatively controls QTT rank in terms of smoothness of the target function, and explains why certain functions with sharp features and poor quantitative smoothness can still be well approximated by QTTs. The perspective also motivates new practical and efficient algorithms for the construction of QTTs from function evaluations on multiresolution grids.

The characterization of the solution set for a class of algebraic Riccati inequalities is studied. This class arises in the passivity analysis of linear time invariant control systems. Eigenvalue perturbation theory for the Hamiltonian matrix associated with the Riccati inequality is used to analyze the extremal points of the solution set.

Many analyses of multivariate data focus on evaluating the dependence between two sets of variables, rather than the dependence among individual variables within each set. Canonical correlation analysis (CCA) is a classical data analysis technique that estimates parameters describing the dependence between such sets. However, inference procedures based on traditional CCA rely on the assumption that all variables are jointly normally distributed. We present a semiparametric approach to CCA in which the multivariate margins of each variable set may be arbitrary, but the dependence between variable sets is described by a parametric model that provides low-dimensional summaries of dependence. While maximum likelihood estimation in the proposed model is intractable, we propose two estimation strategies: one using a pseudolikelihood for the model and one using a Markov chain Monte Carlo (MCMC) algorithm that provides Bayesian estimates and confidence regions for the between-set dependence parameters. The MCMC algorithm is derived from a multirank likelihood function, which uses only part of the information in the observed data in exchange for being free of assumptions about the multivariate margins. We apply the proposed Bayesian inference procedure to Brazilian climate data and monthly stock returns from the materials and communications market sectors.

In many practical applications, evaluating the joint impact of combinations of environmental variables is important for risk management and structural design analysis. When such variables are considered simultaneously, non-stationarity can exist within both the marginal distributions and dependence structure, resulting in complex data structures. In the context of extremes, few methods have been proposed for modelling trends in extremal dependence, even though capturing this feature is important for quantifying joint impact. Moreover, most proposed techniques are only applicable to data structures exhibiting asymptotic dependence. Motivated by observed dependence trends of data from the UK Climate Projections, we propose a novel semi-parametric modelling framework for bivariate extremal dependence structures. This framework allows us to capture a wide variety of dependence trends for data exhibiting asymptotic independence. When applied to the climate projection dataset, our model detects significant dependence trends in observations and, in combination with models for marginal non-stationarity, can be used to produce estimates of bivariate risk measures at future time points.

A large literature specifies conditions under which the information complexity for a sequence of numerical problems defined for dimensions $1, 2, \ldots$ grows at a moderate rate, i.e., the sequence of problems is tractable. Here, we focus on the situation where the space of available information consists of all linear functionals and the problems are defined as linear operator mappings between Hilbert spaces. We unify the proofs of known tractability results and generalize a number of existing results. These generalizations are expressed as five theorems that provide equivalent conditions for (strong) tractability in terms of sums of functions of the singular values of the solution operators.

Generalized cross-validation (GCV) is a widely-used method for estimating the squared out-of-sample prediction risk that employs a scalar degrees of freedom adjustment (in a multiplicative sense) to the squared training error. In this paper, we examine the consistency of GCV for estimating the prediction risk of arbitrary ensembles of penalized least-squares estimators. We show that GCV is inconsistent for any finite ensemble of size greater than one. Towards repairing this shortcoming, we identify a correction that involves an additional scalar correction (in an additive sense) based on degrees of freedom adjusted training errors from each ensemble component. The proposed estimator (termed CGCV) maintains the computational advantages of GCV and requires neither sample splitting, model refitting, or out-of-bag risk estimation. The estimator stems from a finer inspection of the ensemble risk decomposition and two intermediate risk estimators for the components in this decomposition. We provide a non-asymptotic analysis of the CGCV and the two intermediate risk estimators for ensembles of convex penalized estimators under Gaussian features and a linear response model. Furthermore, in the special case of ridge regression, we extend the analysis to general feature and response distributions using random matrix theory, which establishes model-free uniform consistency of CGCV.

Bidirectional typing is a discipline in which the typing judgment is decomposed explicitly into inference and checking modes, allowing to control the flow of type information in typing rules and to specify algorithmically how they should be used. Bidirectional typing has been fruitfully studied and bidirectional systems have been developed for many type theories. However, the formal development of bidirectional typing has until now been kept confined to specific theories, with general guidelines remaining informal. In this work, we give a generic account of bidirectional typing for a general class of dependent type theories. This is done by first giving a general definition of type theories (or equivalently, a logical framework), for which we define declarative and bidirectional type systems. We then show, in a theory-independent fashion, that the two systems are equivalent. Finally, we establish the decidability of bidirectional typing for normalizing theories, yielding a generic type-checking algorithm that has been implemented in a prototype and used in practice with many theories.

The complexity of the list homomorphism problem for signed graphs appears difficult to classify. Existing results focus on special classes of signed graphs, such as trees and reflexive signed graphs. Irreflexive signed graphs are in a certain sense the heart of the problem, as noted by a recent paper of Kim and Siggers. We focus on a special class of irreflexive signed graphs, namely those in which the unicoloured edges form a spanning path or cycle, which we call separable signed graphs. We classify the complexity of list homomorphisms to these separable signed graphs; we believe that these signed graphs will play an important role for the general resolution of the irreflexive case. We also relate our results to a conjecture of Kim and Siggers concerning the special case of semi-balanced irreflexive signed graphs; we have proved the conjecture in another paper, and the present results add structural information to that topic.

We have introduced the generalized alternating direction implicit iteration (GADI) method for solving large sparse complex symmetric linear systems and proved its convergence properties. Additionally, some numerical results have demonstrated the effectiveness of this algorithm. Furthermore, as an application of the GADI method in solving complex symmetric linear systems, we utilized the flattening operator and Kronecker product properties to solve Lyapunov and Riccati equations with complex coefficients using the GADI method. In solving the Riccati equation, we combined inner and outer iterations, first simplifying the Riccati equation into a Lyapunov equation using the Newton method, and then applying the GADI method for solution. Finally, we provided convergence analysis of the method and corresponding numerical results.

北京阿比特科技有限公司