亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Streaming interactive proofs (SIPs) enable a space-bounded algorithm with one-pass access to a massive stream of data to verify a computation that requires large space, by communicating with a powerful but untrusted prover. This work initiates the study of zero-knowledge proofs for data streams. We define the notion of zero-knowledge in the streaming setting and construct zero-knowledge SIPs for the two main algorithmic building blocks in the streaming interactive proofs literature: the sumcheck and polynomial evaluation protocols. To the best of our knowledge all known streaming interactive proofs are based on either of these tools, and indeed, this allows us to obtain zero-knowledge SIPs for central streaming problems such as index, point and range queries, median, frequency moments, and inner product. Our protocols are efficient in terms of time and space, as well as communication: the verifier algorithm's space complexity is $\mathrm{polylog}(n)$ and, after a non-interactive setup that uses a random string of near-linear length, the remaining parameters are $n^{o(1)}$. En route, we develop an algorithmic toolkit for designing zero-knowledge data stream protocols, consisting of an algebraic streaming commitment protocol and a temporal commitment protocol.Our analyses rely on delicate algebraic and information-theoretic arguments and reductions from average-case communication complexity.

相關內容

Complex cyber-physical systems interact in real-time and must consider both timing and uncertainty. Developing software for such systems is expensive and difficult, especially when modeling, inference, and real-time behavior must be developed from scratch. Recently, a new kind of language has emerged -- called probabilistic programming languages (PPLs) -- that simplify modeling and inference by separating the concerns between probabilistic modeling and inference algorithm implementation. However, these languages have primarily been designed for offline problems, not online real-time systems. In this paper, we combine PPLs and real-time programming primitives by introducing the concept of real-time probabilistic programming languages (RTPPL). We develop an RTPPL called ProbTime and demonstrate its usability on an automotive testbed performing indoor positioning and braking. Moreover, we study fundamental properties and design alternatives for runtime behavior, including a new fairness-guided approach that automatically optimizes the accuracy of a ProbTime system under schedulability constraints.

Nonparametric density models are of great interest in various scientific and engineering disciplines. Classical density kernel methods, while numerically robust and statistically sound in low-dimensional settings, become inadequate even in moderate higher-dimensional settings due to the curse of dimensionality. In this paper, we introduce a new framework called Variance-Reduced Sketching (VRS), specifically designed to estimate multivariable density functions with a reduced curse of dimensionality. Our framework conceptualizes multivariable functions as infinite-size matrices, and facilitates a new sketching technique motivated by numerical linear algebra literature to reduce the variance in density estimation problems. We demonstrate the robust numerical performance of VRS through a series of simulated experiments and real-world data applications. Notably, VRS shows remarkable improvement over existing neural network estimators and classical kernel methods in numerous density models. Additionally, we offer theoretical justifications for VRS to support its ability to deliver nonparametric density estimation with a reduced curse of dimensionality.

We present an algorithm and package, Redistributor, which forces a collection of scalar samples to follow a desired distribution. When given independent and identically distributed samples of some random variable $S$ and the continuous cumulative distribution function of some desired target $T$, it provably produces a consistent estimator of the transformation $R$ which satisfies $R(S)=T$ in distribution. As the distribution of $S$ or $T$ may be unknown, we also include algorithms for efficiently estimating these distributions from samples. This allows for various interesting use cases in image processing, where Redistributor serves as a remarkably simple and easy-to-use tool that is capable of producing visually appealing results. For color correction it outperforms other model-based methods and excels in achieving photorealistic style transfer, surpassing deep learning methods in content preservation. The package is implemented in Python and is optimized to efficiently handle large datasets, making it also suitable as a preprocessing step in machine learning. The source code is available at //github.com/paloha/redistributor.

We propose a method that achieves near-optimal rates for smooth stochastic convex optimization and requires essentially no prior knowledge of problem parameters. This improves on prior work which requires knowing at least the initial distance to optimality d0. Our method, U-DoG, combines UniXGrad (Kavis et al., 2019) and DoG (Ivgi et al., 2023) with novel iterate stabilization techniques. It requires only loose bounds on d0 and the noise magnitude, provides high probability guarantees under sub-Gaussian noise, and is also near-optimal in the non-smooth case. Our experiments show consistent, strong performance on convex problems and mixed results on neural network training.

Approximate Message Passing (AMP) type algorithms are widely used for signal recovery in high-dimensional noisy linear systems. Recently, a principle called Memory AMP (MAMP) was proposed. Leveraging this principle, the gradient descent MAMP (GD-MAMP) algorithm was designed, inheriting the strengths of AMP and OAMP/VAMP. In this paper, we first provide an overflow-avoiding GD-MAMP (OA-GD-MAMP) to address the overflow problem that arises from some intermediate variables exceeding the range of floating point numbers. Second, we develop a complexity-reduced GD-MAMP (CR-GD-MAMP) to reduce the number of matrix-vector products per iteration by 1/3 (from 3 to 2) with little to no impact on the convergence speed.

We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode. We show results on eight datasets, all of which demonstrate our method successfully aligns complex data and discovers dense correspondences. GANgealing significantly outperforms past self-supervised correspondence algorithms and performs on-par with (and sometimes exceeds) state-of-the-art supervised correspondence algorithms on several datasets -- without making use of any correspondence supervision or data augmentation and despite being trained exclusively on GAN-generated data. For precise correspondence, we improve upon state-of-the-art supervised methods by as much as $3\times$. We show applications of our method for augmented reality, image editing and automated pre-processing of image datasets for downstream GAN training.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司