While password managers are a vital tool for internet security, they can also create a massive central point of failure, as evidenced by several major recent data breaches. For over 20 years, deterministic password generators (DPGs) have been proposed, and largely rejected, as a viable alternative to password management tools. In this paper, we survey 45 existing DPGs to asses the main security, privacy, and usability issues hindering their adoption. We then present a new multi-factor deterministic password generator (MFDPG) design that aims to address these shortcomings. The result not only achieves strong, practical password management with zero credential storage, but also effectively serves as a progressive client-side upgrade of weak password-only websites to strong multi-factor authentication.
This technical report presents AutoGen, a new framework that enables development of LLM applications using multiple agents that can converse with each other to solve tasks. AutoGen agents are customizable, conversable, and seamlessly allow human participation. They can operate in various modes that employ combinations of LLMs, human inputs, and tools. AutoGen's design offers multiple advantages: a) it gracefully navigates the strong but imperfect generation and reasoning abilities of these LLMs; b) it leverages human understanding and intelligence, while providing valuable automation through conversations between agents; c) it simplifies and unifies the implementation of complex LLM workflows as automated agent chats. We provide many diverse examples of how developers can easily use AutoGen to effectively solve tasks or build applications, ranging from coding, mathematics, operations research, entertainment, online decision-making, question answering, etc.
The Domain Name System (DNS) is part of critical internet infrastructure, as DNS is invoked whenever a remote server is accessed (an URL is visited, an API request is made, etc.) by any application. DNS queries are served in hierarchical manner, with most queries served locally from cached data, and a small fraction propagating to the top of the hierarchy - DNS root name servers. Our research aims to provide a comprehensive, longitudinal characterization of DNS queries received at B-Root over ten years. We sampled and analyzed a 28-billion-query large dataset from the ten annual Day in the Life of the Internet (DITL) experiments from 2013 through 2022. We sought to identify and quantify unexpected DNS queries, establish longitudinal trends, and compare our findings with published results of others. We found that unexpected query traffic increased from 39.57% in 2013 to 67.91% in 2022, with 36.55% of queries being priming queries. We also observed growth and decline of Chromium-initiated, random DNS queries. Finally, we analyzed the largest DNS query senders and established that most of their traffic consists of unexpected queries.
Autonomous driving systems require many images for analyzing the surrounding environment. However, there is fewer data protection for private information among these captured images, such as pedestrian faces or vehicle license plates, which has become a significant issue. In this paper, in response to the call for data security laws and regulations and based on the advantages of large Field of View(FoV) of the fisheye camera, we build the first Autopilot Desensitization Dataset, called ADD, and formulate the first deep-learning-based image desensitization framework, to promote the study of image desensitization in autonomous driving scenarios. The compiled dataset consists of 650K images, including different face and vehicle license plate information captured by the surround-view fisheye camera. It covers various autonomous driving scenarios, including diverse facial characteristics and license plate colors. Then, we propose an efficient multitask desensitization network called DesCenterNet as a benchmark on the ADD dataset, which can perform face and vehicle license plate detection and desensitization tasks. Based on ADD, we further provide an evaluation criterion for desensitization performance, and extensive comparison experiments have verified the effectiveness and superiority of our method on image desensitization.
Software logs record system activities, aiding maintainers in identifying the underlying causes for failures and enabling prompt mitigation actions. However, maintainers need to inspect a large volume of daily logs to identify the anomalous logs that reveal failure details for further diagnosis. Thus, how to automatically distinguish these anomalous logs from normal logs becomes a critical problem. Existing approaches alleviate the burden on software maintainers, but they are built upon an improper yet critical assumption: logging statements in the software remain unchanged. While software keeps evolving, our empirical study finds that evolving software brings three challenges: log parsing errors, evolving log events, and unstable log sequences. In this paper, we propose a novel unsupervised approach named Evolving Log analyzer (EvLog) to mitigate these challenges. We first build a multi-level representation extractor to process logs without parsing to prevent errors from the parser. The multi-level representations preserve the essential semantics of logs while leaving out insignificant changes in evolving events. EvLog then implements an anomaly discriminator with an attention mechanism to identify the anomalous logs and avoid the issue brought by the unstable sequence. EvLog has shown effectiveness in two real-world system evolution log datasets with an average F1 score of 0.955 and 0.847 in the intra-version setting and inter-version setting, respectively, which outperforms other state-of-the-art approaches by a wide margin. To our best knowledge, this is the first study on localizing anomalous logs over software evolution. We believe our work sheds new light on the impact of software evolution with the corresponding solutions for the log analysis community.
Data regulations, such as GDPR, are increasingly being adopted globally to protect against unsafe data management practices. Such regulations are, often ambiguous (with multiple valid interpretations) when it comes to defining the expected dynamic behavior of data processing systems. This paper argues that it is possible to represent regulations such as GDPR formally as invariants using a (small set of) data processing concepts that capture system behavior. When such concepts are grounded, i.e., they are provided with a single unambiguous interpretation, systems can achieve compliance by demonstrating that the system-actions they implement maintain the invariants (representing the regulations). To illustrate our vision, we propose Data-CASE, a simple yet powerful model that (a) captures key data processing concepts (b) a set of invariants that describe regulations in terms of these concepts. We further illustrate the concept of grounding using "deletion" as an example and highlight several ways in which end-users, companies, and software designers/engineers can use Data-CASE.
In recommendation systems (RS), user behavior data is observational rather than experimental, resulting in widespread bias in the data. Consequently, tackling bias has emerged as a major challenge in the field of recommendation systems. Recently, Doubly Robust Learning (DR) has gained significant attention due to its remarkable performance and robust properties. However, our experimental findings indicate that existing DR methods are severely impacted by the presence of so-called Poisonous Imputation, where the imputation significantly deviates from the truth and becomes counterproductive. To address this issue, this work proposes Conservative Doubly Robust strategy (CDR) which filters imputations by scrutinizing their mean and variance. Theoretical analyses show that CDR offers reduced variance and improved tail bounds.In addition, our experimental investigations illustrate that CDR significantly enhances performance and can indeed reduce the frequency of poisonous imputation.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.
This paper proposes a recommender system to alleviate the cold-start problem that can estimate user preferences based on only a small number of items. To identify a user's preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From meta-learning, which can rapidly adopt new task with a few examples, MeLU can estimate new user's preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy.
One of the key requirements to facilitate semantic analytics of information regarding contemporary and historical events on the Web, in the news and in social media is the availability of reference knowledge repositories containing comprehensive representations of events and temporal relations. Existing knowledge graphs, with popular examples including DBpedia, YAGO and Wikidata, focus mostly on entity-centric information and are insufficient in terms of their coverage and completeness with respect to events and temporal relations. EventKG presented in this paper is a multilingual event-centric temporal knowledge graph that addresses this gap. EventKG incorporates over 690 thousand contemporary and historical events and over 2.3 million temporal relations extracted from several large-scale knowledge graphs and semi-structured sources and makes them available through a canonical representation.