亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Policy gradient (PG) methods are popular and efficient for large-scale reinforcement learning due to their relative stability and incremental nature. In recent years, the empirical success of PG methods has led to the development of a theoretical foundation for these methods. In this work, we generalize this line of research by studying the global convergence of stochastic PG methods with momentum terms, which have been demonstrated to be efficient recipes for improving PG methods. We study both the soft-max and the Fisher-non-degenerate policy parametrizations, and show that adding a momentum improves the global optimality sample complexity of vanilla PG methods by $\tilde{\mathcal{O}}(\epsilon^{-1.5})$ and $\tilde{\mathcal{O}}(\epsilon^{-1})$, respectively, where $\epsilon>0$ is the target tolerance. Our work is the first one that obtains global convergence results for the momentum-based PG methods. For the generic Fisher-non-degenerate policy parametrizations, our result is the first single-loop and finite-batch PG algorithm achieving $\tilde{O}(\epsilon^{-3})$ global optimality sample complexity. Finally, as a by-product, our methods also provide general framework for analyzing the global convergence rates of stochastic PG methods, which can be easily applied and extended to different PG estimators.

相關內容

Pacific Graphics是亞洲圖形協會的旗艦會議。作為一個非常成功的會議系列,太平洋圖形公司為太平洋沿岸以及世界各地的研究人員,開發人員,從業人員提供了一個高級論壇,以介紹和討論計算機圖形學及相關領域的新問題,解決方案和技術。太平洋圖形會議的目的是召集來自各個領域的研究人員,以展示他們的最新成果,開展合作并為研究領域的發展做出貢獻。會議將包括定期的論文討論會,進行中的討論會,教程以及由與計算機圖形學和交互系統相關的所有領域的國際知名演講者的演講。 官網地址:

We revisit the finite time analysis of policy gradient methods in the one of the simplest settings: finite state and action MDPs with a policy class consisting of all stochastic policies and with exact gradient evaluations. There has been some recent work viewing this setting as an instance of smooth non-linear optimization problems and showing sub-linear convergence rates with small step-sizes. Here, we take a different perspective based on connections with policy iteration and show that many variants of policy gradient methods succeed with large step-sizes and attain a linear rate of convergence.

Stochastic gradient descent with momentum (SGDM) is the dominant algorithm in many optimization scenarios, including convex optimization instances and non-convex neural network training. Yet, in the stochastic setting, momentum interferes with gradient noise, often leading to specific step size and momentum choices in order to guarantee convergence, set aside acceleration. Proximal point methods, on the other hand, have gained much attention due to their numerical stability and elasticity against imperfect tuning. Their stochastic accelerated variants though have received limited attention: how momentum interacts with the stability of (stochastic) proximal point methods remains largely unstudied. To address this, we focus on the convergence and stability of the stochastic proximal point algorithm with momentum (SPPAM), and show that SPPAM allows a faster linear convergence to a neighborhood compared to stochastic proximal point algorithm (SPPA) with a better contraction factor, under proper hyperparameter tuning. In terms of stability, we show that SPPAM depends on problem constants more favorably than SGDM, allowing a wider range of step size and momentum that lead to convergence.

We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider a general class of models. We develop theoretical guarantees for FA-LD for strongly log-concave distributions with non-i.i.d data and study how the injected noise and the stochastic-gradient noise, the heterogeneity of data, and the varying learning rates affect the convergence. Such an analysis sheds light on the optimal choice of local updates to minimize communication costs. Important to our approach is that the communication efficiency does not deteriorate with the injected noise in the Langevin algorithms. In addition, we examine in our FA-LD algorithm both independent and correlated noise used over different clients. We observe that there is also a trade-off between federation and communication cost there. As local devices may become inactive in the federated network, we also show convergence results based on different averaging schemes where only partial device updates are available.

Improving sample efficiency has been a longstanding goal in reinforcement learning. This paper proposes $\mathtt{VRMPO}$ algorithm: a sample efficient policy gradient method with stochastic mirror descent. In $\mathtt{VRMPO}$, a novel variance-reduced policy gradient estimator is presented to improve sample efficiency. We prove that the proposed $\mathtt{VRMPO}$ needs only $\mathcal{O}(\epsilon^{-3})$ sample trajectories to achieve an $\epsilon$-approximate first-order stationary point, which matches the best sample complexity for policy optimization. The extensive experimental results demonstrate that $\mathtt{VRMPO}$ outperforms the state-of-the-art policy gradient methods in various settings.

Since its invention in 2014, the Adam optimizer has received tremendous attention. On one hand, it has been widely used in deep learning and many variants have been proposed, while on the other hand their theoretical convergence property remains to be a mystery. It is far from satisfactory in the sense that some studies require strong assumptions about the updates, which are not necessarily applicable in practice, while other studies still follow the original problematic convergence analysis of Adam, which was shown to be not sufficient to ensure convergence. Although rigorous convergence analysis exists for Adam, they impose specific requirements on the update of the adaptive step size, which are not generic enough to cover many other variants of Adam. To address theses issues, in this extended abstract, we present a simple and generic proof of convergence for a family of Adam-style methods (including Adam, AMSGrad, Adabound, etc.). Our analysis only requires an increasing or large "momentum" parameter for the first-order moment, which is indeed the case used in practice, and a boundness condition on the adaptive factor of the step size, which applies to all variants of Adam under mild conditions of stochastic gradients. We also establish a variance diminishing result for the used stochastic gradient estimators. Indeed, our analysis of Adam is so simple and generic that it can be leveraged to establish the convergence for solving a broader family of non-convex optimization problems, including min-max, compositional, and bilevel optimization problems. For the full (earlier) version of this extended abstract, please refer to arXiv:2104.14840.

We study the performance of the gradient play algorithm for stochastic games (SGs), where each agent tries to maximize its own total discounted reward by making decisions independently based on current state information which is shared between agents. Policies are directly parameterized by the probability of choosing a certain action at a given state. We show that Nash equilibria (NEs) and first-order stationary policies are equivalent in this setting, and give a local convergence rate around strict NEs. Further, for a subclass of SGs called Markov potential games (which includes the cooperative setting with identical rewards among agents as an important special case), we design a sample-based reinforcement learning algorithm and give a non-asymptotic global convergence rate analysis for both exact gradient play and our sample-based learning algorithm. Our result shows that the number of iterations to reach an $\epsilon$-NE scales linearly, instead of exponentially, with the number of agents. Local geometry and local stability are also considered, where we prove that strict NEs are local maxima of the total potential function and fully-mixed NEs are saddle points.

We propose a novel policy gradient method for multi-agent reinforcement learning, which leverages two different variance-reduction techniques and does not require large batches over iterations. Specifically, we propose a momentum-based decentralized policy gradient tracking (MDPGT) where a new momentum-based variance reduction technique is used to approximate the local policy gradient surrogate with importance sampling, and an intermediate parameter is adopted to track two consecutive policy gradient surrogates. Moreover, MDPGT provably achieves the best available sample complexity of $\mathcal{O}(N^{-1}\epsilon^{-3})$ for converging to an $\epsilon$-stationary point of the global average of $N$ local performance functions (possibly nonconcave). This outperforms the state-of-the-art sample complexity in decentralized model-free reinforcement learning, and when initialized with a single trajectory, the sample complexity matches those obtained by the existing decentralized policy gradient methods. We further validate the theoretical claim for the Gaussian policy function. When the required error tolerance $\epsilon$ is small enough, MDPGT leads to a linear speed up, which has been previously established in decentralized stochastic optimization, but not for reinforcement learning. Lastly, we provide empirical results on a multi-agent reinforcement learning benchmark environment to support our theoretical findings.

In this work we propose a batch version of the Greenkhorn algorithm for multimarginal regularized optimal transport problems. Our framework is general enough to cover, as particular cases, some existing algorithms like Sinkhorn and Greenkhorn algorithm for the bi-marginal setting, and (greedy) MultiSinkhorn for multimarginal optimal transport. We provide a complete convergence analysis, which is based on the properties of the iterative Bregman projections (IBP) method with greedy control. Global linear rate of convergence and explicit bound on the iteration complexity are obtained. When specialized to above mentioned algorithms, our results give new insights and/or improve existing ones.

Accelerated gradient methods are the cornerstones of large-scale, data-driven optimization problems that arise naturally in machine learning and other fields concerning data analysis. We introduce a gradient-based optimization framework for achieving acceleration, based on the recently introduced notion of fixed-time stability of dynamical systems. The method presents itself as a generalization of simple gradient-based methods suitably scaled to achieve convergence to the optimizer in a fixed-time, independent of the initialization. We achieve this by first leveraging a continuous-time framework for designing fixed-time stable dynamical systems, and later providing a consistent discretization strategy, such that the equivalent discrete-time algorithm tracks the optimizer in a practically fixed number of iterations. We also provide a theoretical analysis of the convergence behavior of the proposed gradient flows, and their robustness to additive disturbances for a range of functions obeying strong convexity, strict convexity, and possibly nonconvexity but satisfying the Polyak-{\L}ojasiewicz inequality. We also show that the regret bound on the convergence rate is constant by virtue of the fixed-time convergence. The hyperparameters have intuitive interpretations and can be tuned to fit the requirements on the desired convergence rates. We validate the accelerated convergence properties of the proposed schemes on a range of numerical examples against the state-of-the-art optimization algorithms. Our work provides insights on developing novel optimization algorithms via discretization of continuous-time flows.

This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.

北京阿比特科技有限公司