We propose deep Koopman-layered models with learnable parameters in the form of Toeplitz matrices for analyzing the dynamics of time-series data. The proposed model has both theoretical solidness and flexibility. By virtue of the universal property of Toeplitz matrices and the reproducing property underlined in the model, we can show its universality and the generalization property. In addition, the flexibility of the proposed model enables the model to fit time-series data coming from nonautonomous dynamical systems. When training the model, we apply Krylov subspace methods for efficient computations. In addition, the proposed model can be regarded as a neural ODE-based model. In this sense, the proposed model establishes a new connection among Koopman operators, neural ODEs, and numerical linear algebraic methods.
The ambiguity at the boundaries of different semantic classes in point cloud semantic segmentation often leads to incorrect decisions in intelligent perception systems, such as autonomous driving. Hence, accurate delineation of the boundaries is crucial for improving safety in autonomous driving. A novel spatial inter-correlation enhancement and spatially-embedded feature fusion network (SIESEF-FusionNet) is proposed in this paper, enhancing spatial inter-correlation by combining inverse distance weighting and angular compensation to extract more beneficial spatial information without causing redundancy. Meanwhile, a new spatial adaptive pooling module is also designed, embedding enhanced spatial information into semantic features for strengthening the context-awareness of semantic features. Experimental results demonstrate that 83.7% mIoU and 97.8% OA are achieved by SIESEF-FusionNet on the Toronto3D dataset, with performance superior to other baseline methods. A value of 61.1% mIoU is reached on the semanticKITTI dataset, where a marked improvement in segmentation performance is observed. In addition, the effectiveness and plug-and-play capability of the proposed modules are further verified through ablation studies.
Selective state space models (SSMs) represented by Mamba have demonstrated their computational efficiency and promising outcomes in various tasks, including automatic speech recognition (ASR). Mamba has been applied to ASR task with the attention-based encoder-decoder framework, where the cross-attention mechanism between encoder and decoder remains. This paper explores the capability of Mamba as the decoder-only architecture in ASR task. Our MAmba-based DEcoder-ONly approach (MADEON) consists of a single decoder that takes speech tokens as a condition and predicts text tokens in an autoregressive manner. To enhance MADEON, we further propose speech prefixing that performs bidirectional processing on speech tokens, which enriches the contextual information in the hidden states. Our experiments show that MADEON significantly outperforms a non-selective SSM. The combination of speech prefixing and the recently proposed Mamba-2 yields comparable performance to Transformer-based models on large datasets.
Markov chains are the de facto finite-state model for stochastic dynamical systems, and Markov decision processes (MDPs) extend Markov chains by incorporating non-deterministic behaviors. Given an MDP and rewards on states, a classical optimization criterion is the maximal expected total reward where the MDP stops after T steps, which can be computed by a simple dynamic programming algorithm. We consider a natural generalization of the problem where the stopping times can be chosen according to a probability distribution, such that the expected stopping time is T, to optimize the expected total reward. Quite surprisingly we establish inter-reducibility of the expected stopping-time problem for Markov chains with the Positivity problem (which is related to the well-known Skolem problem), for which establishing either decidability or undecidability would be a major breakthrough. Given the hardness of the exact problem, we consider the approximate version of the problem: we show that it can be solved in exponential time for Markov chains and in exponential space for MDPs.
We proposed a method for learning the actual body image of a musculoskeletal humanoid for posture generation and object manipulation using inverse kinematics with redundancy in the shoulder complex. The effectiveness of this method was confirmed by realizing automobile steering wheel operation. The shoulder complex has a scapula that glides over the rib cage and an open spherical joint, and is supported by numerous muscle groups, enabling a wide range of motion. As a development of the human mimetic shoulder complex, we have increased the muscle redundancy by implementing deep muscles and stabilize the joint drive. As a posture generation method to utilize the joint redundancy of the shoulder complex, we consider inverse kinematics based on the scapular drive strategy suggested by the scapulohumeral rhythm of the human body. In order to control a complex robot imitating a human body, it is essential to learn its own body image, but it is difficult to know its own state accurately due to its deformation which is difficult to measure. To solve this problem, we developed a method to acquire a self-body image that can be updated appropriately by recognizing the hand position relative to an object for the purpose of object manipulation. We apply the above methods to a full-body musculoskeletal humanoid, Kengoro, and confirm its effectiveness by conducting an experiment to operate a car steering wheel, which requires the appropriate use of both arms.
The immersed interface method (IIM) for models of fluid flow and fluid-structure interaction imposes jump conditions that capture stress discontinuities generated by forces that are concentrated along immersed boundaries. Most prior work using the IIM for fluid dynamic applications has focused on smooth interfaces, but boundaries with sharp features such as corners and edges can appear in practical analyses, particularly on engineered structures. The present study builds on our work to integrate finite element-type representations of interface geometries with the IIM. Initial realizations of this approach used a continuous Galerkin (CG) finite element discretization for the boundary, but as we show herein, these approaches generate large errors near sharp geometrical features. To overcome this difficulty, this study introduces an IIM approach using discontinuous Galerkin (DG) representation of the jump conditions. Numerical examples explore the impacts of different interface representations on accuracy for both smooth and sharp boundaries, particularly flows interacting with fixed interface configurations. We demonstrate that using a DG approach provides accuracy that is comparable to the CG method for smooth cases. Further, we identify a time step size restriction for the CG representation that is directly related to the sharpness of the geometry. In contrast, time step size restrictions imposed by DG representations are demonstrated to be insensitive to the presence of sharp features.
Mixture-of-Experts (MoE) has emerged as a practical approach to scale up parameters for the Transformer model to achieve better generalization while maintaining a sub-linear increase in computation overhead. Current MoE models are mainly built with expert parallelism on distributed devices. However, it usually depends on homogeneous devices to deploy and suffers from heavy communication overhead and computation redundancy. In this paper, we explore developing a \texttt{H}eterogeneous-aware \texttt{EX}pert \texttt{A}llocation framework, \textbf{\texttt{HEXA-MoE}}, with significantly enhanced computing efficiency. It contains two components: ($1$) \textit{Expert-Specific Operators}. We replace the typical general matrix multiplication or grouped matrix multiplication interfaces with our operators, which allows the computing to be performed in an in-place manner with \textbf{ZERO} redundancy. ($2$) \textit{Adaptive Data- and Model-Centric Configurations} for different workload scales. Specifically, we introduce a pipeline-shared cache on each device to tackle the heavy memory consumption in the existing data-centric MoE library. Comprehensive experiments on the Swin-MoE benchmark consistently reveal the effectiveness of our \texttt{HEXA-MoE} framework, i.e., reducing $10\%\sim48\%$ memory consumption and achieving $0.5\sim4.3\times$ speed up compared to current state-of-the-art MoE libraries. Furthermore, we examine our \texttt{HEXA-MoE} with heterogeneous devices for both data- and model-centric settings. Promising results show that employing optimal parallel configuration with \texttt{HEXA-MoE} on heterogeneous devices can substantially minimize overall latency. Codes are available at //github.com/UNITES-Lab/HEXA-MoE.
Diffusion models (DMs) have recently shown outstanding capabilities in modeling complex image distributions, making them expressive image priors for solving Bayesian inverse problems. However, most existing DM-based methods rely on approximations in the generative process to be generic to different inverse problems, leading to inaccurate sample distributions that deviate from the target posterior defined within the Bayesian framework. To harness the generative power of DMs while avoiding such approximations, we propose a Markov chain Monte Carlo algorithm that performs posterior sampling for general inverse problems by reducing it to sampling the posterior of a Gaussian denoising problem. Crucially, we leverage a general DM formulation as a unified interface that allows for rigorously solving the denoising problem with a range of state-of-the-art DMs. We demonstrate the effectiveness of the proposed method on six inverse problems (three linear and three nonlinear), including a real-world black hole imaging problem. Experimental results indicate that our proposed method offers more accurate reconstructions and posterior estimation compared to existing DM-based imaging inverse methods.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.