亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bit-serial Processing-In-Memory (PIM) is an attractive paradigm for accelerator architectures, for parallel workloads such as Deep Learning (DL), because of its capability to achieve massive data parallelism at a low area overhead and provide orders-of-magnitude data movement savings by moving computational resources closer to the data. While many PIM architectures have been proposed, improvements are needed in communicating intermediate results to consumer kernels, for communication between tiles at scale, for reduction operations, and for efficiently performing bit-serial operations with constants. We present PIMSAB, a scalable architecture that provides spatially aware communication network for efficient intra-tile and inter-tile data movement and provides efficient computation support for generally inefficient bit-serial compute patterns. Our architecture consists of a massive hierarchical array of compute-enabled SRAMs (CRAMs) and is codesigned with a compiler to achieve high utilization. The key novelties of our architecture are: (1) providing efficient support for spatially-aware communication by providing local H-tree network for reductions, by adding explicit hardware for shuffling operands, and by deploying systolic broadcasting, and (2) taking advantage of the divisible nature of bit-serial computations through adaptive precision, bit-slicing and efficient handling of constant operations. When compared against a similarly provisioned modern Tensor Core GPU (NVIDIA A100), across common DL kernels and an end-to-end DL network (Resnet18), PIMSAB outperforms the GPU by 3x, and reduces energy by 4.2x. We compare PIMSAB with similarly provisioned state-of-the-art SRAM PIM (Duality Cache) and DRAM PIM (SIMDRAM) and observe a speedup of 3.7x and 3.88x respectively.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡(luo)會議。 Publisher:IFIP。 SIT:

In Class-Incremental Learning (CIL) an image classification system is exposed to new classes in each learning session and must be updated incrementally. Methods approaching this problem have updated both the classification head and the feature extractor body at each session of CIL. In this work, we develop a baseline method, First Session Adaptation (FSA), that sheds light on the efficacy of existing CIL approaches and allows us to assess the relative performance contributions from head and body adaption. FSA adapts a pre-trained neural network body only on the first learning session and fixes it thereafter; a head based on linear discriminant analysis (LDA), is then placed on top of the adapted body, allowing exact updates through CIL. FSA is replay-free i.e.~it does not memorize examples from previous sessions of continual learning. To empirically motivate FSA, we first consider a diverse selection of 22 image-classification datasets, evaluating different heads and body adaptation techniques in high/low-shot offline settings. We find that the LDA head performs well and supports CIL out-of-the-box. We also find that Featurewise Layer Modulation (FiLM) adapters are highly effective in the few-shot setting, and full-body adaption in the high-shot setting. Second, we empirically investigate various CIL settings including high-shot CIL and few-shot CIL, including settings that have previously been used in the literature. We show that FSA significantly improves over the state-of-the-art in 15 of the 16 settings considered. FSA with FiLM adapters is especially performant in the few-shot setting. These results indicate that current approaches to continuous body adaptation are not working as expected. Finally, we propose a measure that can be applied to a set of unlabelled inputs which is predictive of the benefits of body adaptation.

In the era of large language models, Mixture-of-Experts (MoE) is a promising architecture for managing computational costs when scaling up model parameters. However, conventional MoE architectures like GShard, which activate the top-$K$ out of $N$ experts, face challenges in ensuring expert specialization, i.e. each expert acquires non-overlapping and focused knowledge. In response, we propose the DeepSeekMoE architecture towards ultimate expert specialization. It involves two principal strategies: (1) finely segmenting the experts into $mN$ ones and activating $mK$ from them, allowing for a more flexible combination of activated experts; (2) isolating $K_s$ experts as shared ones, aiming at capturing common knowledge and mitigating redundancy in routed experts. Starting from a modest scale with 2B parameters, we demonstrate that DeepSeekMoE 2B achieves comparable performance with GShard 2.9B, which has 1.5 times the expert parameters and computation. In addition, DeepSeekMoE 2B nearly approaches the performance of its dense counterpart with the same number of total parameters, which set the upper bound of MoE models. Subsequently, we scale up DeepSeekMoE to 16B parameters and show that it achieves comparable performance with LLaMA2 7B, with only about 40% of computations. Further, our preliminary efforts to scale up DeepSeekMoE to 145B parameters consistently validate its substantial advantages over the GShard architecture, and show its performance comparable with DeepSeek 67B, using only 28.5% (maybe even 18.2%) of computations.

Multi-object tracking (MOT) in video sequences remains a challenging task, especially in scenarios with significant camera movements. This is because targets can drift considerably on the image plane, leading to erroneous tracking outcomes. Addressing such challenges typically requires supplementary appearance cues or Camera Motion Compensation (CMC). While these strategies are effective, they also introduce a considerable computational burden, posing challenges for real-time MOT. In response to this, we introduce UCMCTrack, a novel motion model-based tracker robust to camera movements. Unlike conventional CMC that computes compensation parameters frame-by-frame, UCMCTrack consistently applies the same compensation parameters throughout a video sequence. It employs a Kalman filter on the ground plane and introduces the Mapped Mahalanobis Distance (MMD) as an alternative to the traditional Intersection over Union (IoU) distance measure. By leveraging projected probability distributions on the ground plane, our approach efficiently captures motion patterns and adeptly manages uncertainties introduced by homography projections. Remarkably, UCMCTrack, relying solely on motion cues, achieves state-of-the-art performance across a variety of challenging datasets, including MOT17, MOT20, DanceTrack and KITTI. More details and code are available at //github.com/corfyi/UCMCTrack

Auditory spatial attention detection (ASAD) is used to determine the direction of a listener's attention to a speaker by analyzing her/his electroencephalographic (EEG) signals. This study aimed to further improve the performance of ASAD with a short decision window (i.e., <1 s) rather than with long decision windows in previous studies. An end-to-end temporal attention network (i.e., TAnet) was introduced in this work. TAnet employs a multi-head attention (MHA) mechanism, which can more effectively capture the interactions among time steps in collected EEG signals and efficiently assign corresponding weights to those EEG time steps. Experiments demonstrated that, compared with the CNN-based method and recent ASAD methods, TAnet provided improved decoding performance in the KUL dataset, with decoding accuracies of 92.4% (decision window 0.1 s), 94.9% (0.25 s), 95.1% (0.3 s), 95.4% (0.4 s), and 95.5% (0.5 s) with short decision windows (i.e., <1 s). As a new ASAD model with a short decision window, TAnet can potentially facilitate the design of EEG-controlled intelligent hearing aids and sound recognition systems.

Attention-based Neural Networks (NN) have demonstrated their effectiveness in accurate memory access prediction, an essential step in data prefetching. However, the substantial computational overheads associated with these models result in high inference latency, limiting their feasibility as practical prefetchers. To close the gap, we propose a new approach based on tabularization that significantly reduces model complexity and inference latency without sacrificing prediction accuracy. Our novel tabularization methodology takes as input a distilled, yet highly accurate attention-based model for memory access prediction and efficiently converts its expensive matrix multiplications into a hierarchy of fast table lookups. As an exemplar of the above approach, we develop DART, a prefetcher comprised of a simple hierarchy of tables. With a modest 0.09 drop in F1-score, DART reduces 99.99% of arithmetic operations from the large attention-based model and 91.83% from the distilled model. DART accelerates the large model inference by 170x and the distilled model by 9.4x. DART has comparable latency and storage costs as state-of-the-art rule-based prefetcher BO but surpasses it by 6.1% in IPC improvement, resulting in a 37.6% speed-up. DART outperforms state-of-the-art NN-based prefetchers TransFetch by 33.1% and Voyager by 37.2% in terms of IPC improvement, primarily due to its low prefetching latency.

Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.

Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司