Pre-trained language models (PLMs) that use subword tokenization schemes can succeed at a variety of language tasks that require character-level information, despite lacking explicit access to the character composition of tokens. Here, studying a range of models (e.g., GPT- J, BERT, RoBERTa, GloVe), we probe what word pieces encode about character-level information by training classifiers to predict the presence or absence of a particular alphabetical character in a token, based on its embedding (e.g., probing whether the model embedding for "cat" encodes that it contains the character "a"). We find that these models robustly encode character-level information and, in general, larger models perform better at the task. We show that these results generalize to characters from non-Latin alphabets (Arabic, Devanagari, and Cyrillic). Then, through a series of experiments and analyses, we investigate the mechanisms through which PLMs acquire English-language character information during training and argue that this knowledge is acquired through multiple phenomena, including a systematic relationship between particular characters and particular parts of speech, as well as natural variability in the tokenization of related strings.
The limited size of existing query-focused summarization datasets renders training data-driven summarization models challenging. Meanwhile, the manual construction of a query-focused summarization corpus is costly and time-consuming. In this paper, we use Wikipedia to automatically collect a large query-focused summarization dataset (named WIKIREF) of more than 280, 000 examples, which can serve as a means of data augmentation. We also develop a BERT-based query-focused summarization model (Q-BERT) to extract sentences from the documents as summaries. To better adapt a huge model containing millions of parameters to tiny benchmarks, we identify and fine-tune only a sparse subnetwork, which corresponds to a small fraction of the whole model parameters. Experimental results on three DUC benchmarks show that the model pre-trained on WIKIREF has already achieved reasonable performance. After fine-tuning on the specific benchmark datasets, the model with data augmentation outperforms strong comparison systems. Moreover, both our proposed Q-BERT model and subnetwork fine-tuning further improve the model performance. The dataset is publicly available at //aka.ms/wikiref.
We identify a new class of vulnerabilities in implementations of differential privacy. Specifically, they arise when computing basic statistics such as sums, thanks to discrepancies between the implemented arithmetic using finite data types (namely, ints or floats) and idealized arithmetic over the reals or integers. These discrepancies cause the sensitivity of the implemented statistics (i.e., how much one individual's data can affect the result) to be much higher than the sensitivity we expect. Consequently, essentially all differential privacy libraries fail to introduce enough noise to hide individual-level information as required by differential privacy, and we show that this may be exploited in realistic attacks on differentially private query systems. In addition to presenting these vulnerabilities, we also provide a number of solutions, which modify or constrain the way in which the sum is implemented in order to recover the idealized or near-idealized bounds on sensitivity.
We study incentive designs for a class of stochastic Stackelberg games with one leader and a large number of (finite as well as infinite population of) followers. We investigate whether the leader can craft a strategy under a dynamic information structure that induces a desired behavior among the followers. For the finite population setting, under sufficient conditions, we show that there exist symmetric incentive strategies for the leader that attain approximately optimal performance from the leader's viewpoint and lead to an approximate symmetric (pure) Nash best response among the followers. Driving the follower population to infinity, we arrive at the interesting result that in this infinite-population regime the leader cannot design a smooth "finite-energy" incentive strategy, namely, a mean-field limit for such games is not well-defined. As a way around this, we introduce a class of stochastic Stackelberg games with a leader, a major follower, and a finite or infinite population of minor followers, where the leader provides an incentive only for the major follower, who in turn influences the rest of the followers through her strategy. For this class of problems, we are able to establish the existence of an incentive strategy with finitely many minor followers. We also show that if the leader's strategy with finitely many minor followers converges as their population size grows, then the limit defines an incentive strategy for the corresponding mean-field Stackelberg game. Examples of quadratic Gaussian games are provided to illustrate both positive and negative results. In addition, as a byproduct of our analysis, we establish existence of a randomized incentive strategy for the class mean-field Stackelberg games, which in turn provides an approximation for an incentive strategy of the corresponding finite population Stackelberg game.
It has been rightfully emphasized that the use of AI for clinical decision making could amplify health disparities. An algorithm may encode protected characteristics, and then use this information for making predictions due to undesirable correlations in the (historical) training data. It remains unclear how we can establish whether such information is actually used. Besides the scarcity of data from underserved populations, very little is known about how dataset biases manifest in predictive models and how this may result in disparate performance. This article aims to shed some light on these issues by exploring new methodology for subgroup analysis in image-based disease detection models. We utilize two publicly available chest X-ray datasets, CheXpert and MIMIC-CXR, to study performance disparities across race and biological sex in deep learning models. We explore test set resampling, transfer learning, multitask learning, and model inspection to assess the relationship between the encoding of protected characteristics and disease detection performance across subgroups. We confirm subgroup disparities in terms of shifted true and false positive rates which are partially removed after correcting for population and prevalence shifts in the test sets. We further find a previously used transfer learning method to be insufficient for establishing whether specific patient information is used for making predictions. The proposed combination of test-set resampling, multitask learning, and model inspection reveals valuable new insights about the way protected characteristics are encoded in the feature representations of deep neural networks.
In this paper, we propose a combined use of transformed images and vision transformer (ViT) models transformed with a secret key. We show for the first time that models trained with plain images can be directly transformed to models trained with encrypted images on the basis of the ViT architecture, and the performance of the transformed models is the same as models trained with plain images when using test images encrypted with the key. In addition, the proposed scheme does not require any specially prepared data for training models or network modification, so it also allows us to easily update the secret key. In an experiment, the effectiveness of the proposed scheme is evaluated in terms of performance degradation and model protection performance in an image classification task on the CIFAR-10 dataset.
In this paper, we present end-to-end and speech embedding based systems trained in a self-supervised fashion to participate in the ACM Multimedia 2022 ComParE Challenge, specifically the stuttering sub-challenge. In particular, we exploit the embeddings from the pre-trained Wav2Vec2.0 model for stuttering detection (SD) on the KSoF dataset. After embedding extraction, we benchmark with several methods for SD. Our proposed self-supervised based SD system achieves a UAR of 36.9% and 41.0% on validation and test sets respectively, which is 31.32% (validation set) and 1.49% (test set) higher than the best (DeepSpectrum) challenge baseline (CBL). Moreover, we show that concatenating layer embeddings with Mel-frequency cepstral coefficients (MFCCs) features further improves the UAR of 33.81% and 5.45% on validation and test sets respectively over the CBL. Finally, we demonstrate that the summing information across all the layers of Wav2Vec2.0 surpasses the CBL by a relative margin of 45.91% and 5.69% on validation and test sets respectively. Grand-challenge: Computational Paralinguistics ChallengE
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.
Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.
Transformer-based models are now widely used in NLP, but we still do not understand a lot about their inner workings. This paper describes what is known to date about the famous BERT model (Devlin et al. 2019), synthesizing over 40 analysis studies. We also provide an overview of the proposed modifications to the model and its training regime. We then outline the directions for further research.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.