亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gaussian processes (GP) and Kriging are widely used in traditional spatio-temporal mod-elling and prediction. These techniques typically presuppose that the data are observed from a stationary GP with parametric covariance structure. However, processes in real-world applications often exhibit non-Gaussianity and nonstationarity. Moreover, likelihood-based inference for GPs is computationally expensive and thus prohibitive for large datasets. In this paper we propose a deep neural network (DNN) based two-stage model for spatio-temporal interpolation and forecasting. Interpolation is performed in the first step, which utilizes a dependent DNN with the embedding layer constructed with spatio-temporal basis functions. For the second stage, we use Long-Short Term Memory (LSTM) and convolutional LSTM to forecast future observations at a given location. We adopt the quantile-based loss function in the DNN to provide probabilistic forecasting. Compared to Kriging, the proposed method does not require specifying covariance functions or making stationarity assumption, and is computationally efficient. Therefore, it is suitable for large-scale prediction of complex spatio-temporal processes. We apply our method to monthly $PM_{2.5}$ data at more than $200,000$ space-time locations from January 1999 to December 2022 for fast imputation of missing values and forecasts with uncertainties.

相關內容

Audio-Visual Question Answering (AVQA) task aims to answer questions about different visual objects, sounds, and their associations in videos. Such naturally multi-modal videos are composed of rich and complex dynamic audio-visual components, where most of which could be unrelated to the given questions, or even play as interference in answering the content of interest. Oppositely, only focusing on the question-aware audio-visual content could get rid of influence, meanwhile enabling the model to answer more efficiently. In this paper, we propose a Progressive Spatio-Temporal Perception Network (PSTP-Net), which contains three modules that progressively identify key spatio-temporal regions w.r.t. questions. Specifically, a temporal segment selection module is first introduced to select the most relevant audio-visual segments related to the given question. Then, a spatial region selection module is utilized to choose the most relevant regions associated with the question from the selected temporal segments. To further refine the selection of features, an audio-guided visual attention module is employed to perceive the association between auido and selected spatial regions. Finally, the spatio-temporal features from these modules are integrated for answering the question. Extensive experimental results on the public MUSIC-AVQA and AVQA datasets provide compelling evidence of the effectiveness and efficiency of PSTP-Net. Code is available at: \href{//github.com/GeWu-Lab/PSTP-Net}{//github.com/GeWu-Lab/PSTP-Net}

The rudimentary adversarial attacks utilize additive noise to attack facial recognition (FR) models. However, because manipulating the total face is impractical in the physical setting, most real-world FR attacks are based on adversarial patches, which limit perturbations to a small area. Previous adversarial patch attacks often resulted in unnatural patterns and clear boundaries that were easily noticeable. In this paper, we argue that generating adversarial patches with plausible content can result in stronger transferability than using additive noise or directly sampling from the latent space. To generate natural-looking and highly transferable adversarial patches, we propose an innovative two-stage coarse-to-fine attack framework called Adv-Inpainting. In the first stage, we propose an attention-guided StyleGAN (Att-StyleGAN) that adaptively combines texture and identity features based on the attention map to generate high-transferable and natural adversarial patches. In the second stage, we design a refinement network with a new boundary variance loss to further improve the coherence between the patch and its surrounding area. Experiment results demonstrate that Adv-Inpainting is stealthy and can produce adversarial patches with stronger transferability and improved visual quality than previous adversarial patch attacks.

Motivated by the advances in deep learning techniques, the application of Unmanned Aerial Vehicle (UAV)-based object detection has proliferated across a range of fields, including vehicle counting, fire detection, and city monitoring. While most existing research studies only a subset of the challenges inherent to UAV-based object detection, there are few studies that balance various aspects to design a practical system for energy consumption reduction. In response, we present the E3-UAV, an edge-based energy-efficient object detection system for UAVs. The system is designed to dynamically support various UAV devices, edge devices, and detection algorithms, with the aim of minimizing energy consumption by deciding the most energy-efficient flight parameters (including flight altitude, flight speed, detection algorithm, and sampling rate) required to fulfill the detection requirements of the task. We first present an effective evaluation metric for actual tasks and construct a transparent energy consumption model based on hundreds of actual flight data to formalize the relationship between energy consumption and flight parameters. Then we present a lightweight energy-efficient priority decision algorithm based on a large quantity of actual flight data to assist the system in deciding flight parameters. Finally, we evaluate the performance of the system, and our experimental results demonstrate that it can significantly decrease energy consumption in real-world scenarios. Additionally, we provide four insights that can assist researchers and engineers in their efforts to study UAV-based object detection further.

As techniques for fault-tolerant quantum computation keep improving, it is natural to ask: what is the fundamental lower bound on redundancy? In this paper, we obtain a lower bound on the redundancy required for $\epsilon$-accurate implementation of a large class of operations that includes unitary operators. For the practically relevant case of sub-exponential depth and sub-linear gate size, our bound on redundancy is tighter than the known lower bounds. We obtain this bound by connecting fault-tolerant computation with a set of finite blocklength quantum communication problems whose accuracy requirements satisfy a joint constraint. The lower bound on redundancy obtained here leads to a strictly smaller upper bound on the noise threshold for non-degradable noise. Our bound directly extends to the case where noise at the outputs of a gate are non-i.i.d. but noise across gates are i.i.d.

Internet of Things (IoT) systems require highly scalable infrastructure to adaptively provide services to meet various performance requirements. Combining Software-Defined Networking (SDN) with Mobile Edge Cloud (MEC) technology brings more flexibility for IoT systems. We present a four-tier task processing architecture for MEC and vehicular networks, which includes processing tasks locally within a vehicle, on neighboring vehicles, on an edge cloud, and on a remote cloud. The flexible network connection is controlled by SDN. We propose a CPU resource allocation algorithm, called Partial Idle Resource Strategy (PIRS) with Vehicle to Vehicle (V2V) communications, based on Asymmetric Nash Bargaining Solution (ANBS) in Game Theory. PIRS encourages vehicles in the same location to cooperate by sharing part of their spare CPU resources. In our simulations, we adopt four applications running on the vehicles to generate workload. We compare the proposed algorithm with Non-Cooperation Strategy (NCS) and All Idle Resource Strategy (AIRS). In NCS, the vehicles execute tasks generated by the applications in their own On-Board Units (OBU), while in AIRS vehicles provide all their CPU resources to help other vehicles offloading requests. Our simulation results show that our PIRS strategy can execute more tasks on the V2V layer and lead to fewer number of task (and their length) to be offloaded to the cloud, reaching up to 28% improvement compared to NCS and up to 10% improvement compared to AIRS.

Major advances in Machine Learning (ML) and Artificial Intelligence (AI) increasingly take the form of developing and releasing general-purpose models. These models are designed to be adapted by other businesses and agencies to perform a particular, domain-specific function. This process has become known as adaptation or fine-tuning. This paper offers a model of the fine-tuning process where a Generalist brings the technological product (here an ML model) to a certain level of performance, and one or more Domain-specialist(s) adapts it for use in a particular domain. Both entities are profit-seeking and incur costs when they invest in the technology, and they must reach a bargaining agreement on how to share the revenue for the technology to reach the market. For a relatively general class of cost and revenue functions, we characterize the conditions under which the fine-tuning game yields a profit-sharing solution. We observe that any potential domain-specialization will either contribute, free-ride, or abstain in their uptake of the technology, and we provide conditions yielding these different strategies. We show how methods based on bargaining solutions and sub-game perfect equilibria provide insights into the strategic behavior of firms in these types of interactions, and we find that profit-sharing can still arise even when one firm has significantly higher costs than another. We also provide methods for identifying Pareto-optimal bargaining arrangements for a general set of utility functions.

Pan-sharpening, as one of the most commonly used techniques in remote sensing systems, aims to inject spatial details from panchromatic images into multispectral images (MS) to obtain high-resolution multispectral images. Since deep learning has received widespread attention because of its powerful fitting ability and efficient feature extraction, a variety of pan-sharpening methods have been proposed to achieve remarkable performance. However, current pan-sharpening methods usually require the paired panchromatic (PAN) and MS images as input, which limits their usage in some scenarios. To address this issue, in this paper we observe that the spatial details from PAN images are mainly high-frequency cues, i.e., the edges reflect the contour of input PAN images. This motivates us to develop a PAN-agnostic representation to store some base edges, so as to compose the contour for the corresponding PAN image via them. As a result, we can perform the pan-sharpening task with only the MS image when inference. To this end, a memory-based network is adapted to extract and memorize the spatial details during the training phase and is used to replace the process of obtaining spatial information from PAN images when inference, which is called Memory-based Spatial Details Network (MSDN). Finally, we integrate the proposed MSDN module into the existing deep learning-based pan-sharpening methods to achieve an end-to-end pan-sharpening network. With extensive experiments on the Gaofen1 and WorldView-4 satellites, we verify that our method constructs good spatial details without PAN images and achieves the best performance. The code is available at //github.com/Zhao-Tian-yi/Learning-to-Pan-sharpening-with-Memories-of-Spatial-Details.git.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司