IoT Servers that receive and process packets from IoT devices should meet the QoS needs of incoming packets, and support Attack Detection software that analyzes the incoming traffic to identify and discard packets that may be part of a Cyberattack. Since UDP Flood Attacks can overwhelm IoT Servers by creating congestion that paralyzes their operation and limits their ability to conduct timely Attack Detection, this paper proposes and evaluates a simple architecture to protect a Server that is connected to a Local Area Network, using a Quasi Deterministic Transmission Policy Forwarder (SQF) at its input port. This Forwarder shapes the incoming traffic, sends it to the Server in a manner which does not modify the overall delay of the packets, and avoids congestion inside the Server. The relevant theoretical background is briefly reviewed, and measurements during a UDP Flood Attack are provided to compare the Server performance, with and without the Forwarder. It is seen that during a UDP Flood Attack, the Forwarder protects the Server from congestion allowing it to effectively identify Attack Packets. On the other hand, the resulting Forwarder congestion can also be eliminated at the Forwarder with "drop" commands generated by the Forwarder itself, or sent by the Server to the Forwarder.
A recent surge of users migrating from Twitter to alternative platforms, such as Mastodon, raised questions regarding what migration patterns are, how different platforms impact user behaviors, and how migrated users settle in the migration process. In this study, we elaborate how we investigate these questions by collecting data over 10,000 users who migrated from Twitter to Mastodon within the first ten weeks following Elon Musk's acquisition of Twitter. Our research is structured in three primary steps. First, we develop algorithms to extract and analyze migration patters. Second, by leveraging behavioral analysis, we examine the distinct architectures of Twitter and Mastodon to learn how different platforms shape user behaviors on each platform. Last, we determine how particular behavioral factors influence users to stay on Mastodon. We share our findings of user migration, insights, and lessons learned from the user behavior study.
A framework to learn a multi-modal distribution is proposed, denoted as the Conditional Quantum Generative Adversarial Network (C-qGAN). The neural network structure is strictly within a quantum circuit and, as a consequence, is shown to represent a more efficient state preparation procedure than current methods. This methodology has the potential to speed-up algorithms, such as Monte Carlo analysis. In particular, after demonstrating the effectiveness of the network in the learning task, the technique is applied to price Asian option derivatives, providing the foundation for further research on other path-dependent options.
Explainable AI has the potential to support more interactive and fluid co-creative AI systems which can creatively collaborate with people. To do this, creative AI models need to be amenable to debugging by offering eXplainable AI (XAI) features which are inspectable, understandable, and modifiable. However, currently there is very little XAI for the arts. In this work, we demonstrate how a latent variable model for music generation can be made more explainable; specifically we extend MeasureVAE which generates measures of music. We increase the explainability of the model by: i) using latent space regularisation to force some specific dimensions of the latent space to map to meaningful musical attributes, ii) providing a user interface feedback loop to allow people to adjust dimensions of the latent space and observe the results of these changes in real-time, iii) providing a visualisation of the musical attributes in the latent space to help people understand and predict the effect of changes to latent space dimensions. We suggest that in doing so we bridge the gap between the latent space and the generated musical outcomes in a meaningful way which makes the model and its outputs more explainable and more debuggable.
Visual Inertial Odometry (VIO) is an essential component of modern Augmented Reality (AR) applications. However, VIO only tracks the relative pose of the device, leading to drift over time. Absolute pose estimation methods infer the device's absolute pose, but their accuracy depends on the input quality. This paper introduces VIO-APR, a new framework for markerless mobile AR that combines an absolute pose regressor (APR) with a local VIO tracking system. VIO-APR uses VIO to assess the reliability of the APR and the APR to identify and compensate for VIO drift. This feedback loop results in more accurate positioning and more stable AR experiences. To evaluate VIO-APR, we created a dataset that combines camera images with ARKit's VIO system output for six indoor and outdoor scenes of various scales. Over this dataset, VIO-APR improves the median accuracy of popular APR by up to 36\% in position and 29\% in orientation, increases the percentage of frames in the high ($0.25 m, 2^{\circ}$) accuracy level by up to 112\% and reduces the percentage of frames predicted below the low ($5 m, 10^\circ$) accuracy greatly. We implement VIO-APR into a mobile AR application using Unity to demonstrate its capabilities. VIO-APR results in noticeably more accurate localization and a more stable overall experience.
Air interface is a fundamental component within any wireless communication system. In Release 18, the 3rd Generation Partnership Project (3GPP) delves into the possibilities of leveraging artificial intelligence (AI)/machine learning (ML) to improve the performance of the fifth-generation (5G) New Radio (NR) air interface. This endeavor marks a pioneering stride within 3GPP's journey in shaping wireless communication standards. This article offers a comprehensive overview of the pivotal themes explored by 3GPP in this domain. Encompassing a general framework for AI/ML and specific use cases such as channel state information feedback, beam management, and positioning, it provides a holistic perspective. Moreover, we highlight the potential trajectory of AI/ML for the NR air interface in 3GPP Release 19, a pathway that paves the journey towards the sixth generation (6G) wireless communication systems that will feature integrated AI and communication as a key usage scenario.
Threshold signatures are a fundamental cryptographic primitive used in many practical applications. As proposed by Boneh and Komlo (CRYPTO'22), TAPS is a threshold signature that is a hybrid of privacy and accountability. It enables a combiner to combine t signature shares while revealing nothing about the threshold t or signing quorum to the public and asks a tracer to track a signature to the quorum that generates it. However, TAPS has three disadvantages: it 1) structures upon a centralized model, 2) assumes that both combiner and tracer are honest, and 3) leaves the tracing unnotarized and static. In this work, we introduce Decentralized, Threshold, dynamically Accountable and Private Signature (DeTAPS) that provides decentralized combining and tracing, enhanced privacy against untrusted combiners (tracers), and notarized and dynamic tracing. Specifically, we adopt Dynamic Threshold Public-Key Encryption (DTPKE) to dynamically notarize the tracing process, design non-interactive zero knowledge proofs to achieve public verifiability of notaries, and utilize the Key-Aggregate Searchable Encryption to bridge TAPS and DTPKE so as to awaken the notaries securely and efficiently. In addition, we formalize the definitions and security requirements for DeTAPS. Then we present a generic construction and formally prove its security and privacy. To evaluate the performance, we build a prototype based on SGX2 and Ethereum.
The context-aware emotional reasoning ability of AI systems, especially in conversations, is of vital importance in applications such as online opinion mining from social media and empathetic dialogue systems. Due to the implicit nature of conveying emotions in many scenarios, commonsense knowledge is widely utilized to enrich utterance semantics and enhance conversation modeling. However, most previous knowledge infusion methods perform empirical knowledge filtering and design highly customized architectures for knowledge interaction with the utterances, which can discard useful knowledge aspects and limit their generalizability to different knowledge sources. Based on these observations, we propose a Bipartite Heterogeneous Graph (BHG) method for enhancing emotional reasoning with commonsense knowledge. In BHG, the extracted context-aware utterance representations and knowledge representations are modeled as heterogeneous nodes. Two more knowledge aggregation node types are proposed to perform automatic knowledge filtering and interaction. BHG-based knowledge infusion can be directly generalized to multi-type and multi-grained knowledge sources. In addition, we propose a Multi-dimensional Heterogeneous Graph Transformer (MHGT) to perform graph reasoning, which can retain unchanged feature spaces and unequal dimensions for heterogeneous node types during inference to prevent unnecessary loss of information. Experiments show that BHG-based methods significantly outperform state-of-the-art knowledge infusion methods and show generalized knowledge infusion ability with higher efficiency. Further analysis proves that previous empirical knowledge filtering methods do not guarantee to provide the most useful knowledge information. Our code is available at: //github.com/SteveKGYang/BHG.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.