亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A graph $H$ is said to be common if the number of monochromatic labelled copies of $H$ in a red/blue edge colouring of a large complete graph is asymptotically minimized by a random colouring with an equal proportion of each colour. We extend this notion to an asymmetric setting. That is, we define a pair $(H_1,H_2)$ of graphs to be $(p,1-p)$-common if a particular linear combination of the density of $H_1$ in red and $H_2$ in blue is asymptotically minimized by a random colouring in which each edge is coloured red with probability $p$ and blue with probability $1-p$. We extend many of the results on common graphs to this asymmetric setting. In addition, we obtain several novel results for common pairs of graphs with no natural analogue in the symmetric setting. We also obtain new examples of common graphs in the classical sense and propose several open problems.

相關內容

We give a near-linear time sampler for the Gibbs distribution of the ferromagnetic Ising models with edge activities $\boldsymbol{\beta} > 1$ and external fields $\boldsymbol{\lambda}<1$ (or symmetrically, $\boldsymbol{\lambda}>1$) on general graphs with bounded or unbounded maximum degree. Our algorithm is based on the field dynamics given in [CFYZ21]. We prove the correctness and efficiency of our algorithm by establishing spectral independence of distribution of the random cluster model and the rapid mixing of Glauber dynamics on the random cluster model in a low-temperature regime, which may be of independent interest.

Mathematical models of cognition are often memoryless and ignore potential fluctuations of their parameters. However, human cognition is inherently dynamic. Thus, we propose to augment mechanistic cognitive models with a temporal dimension and estimate the resulting dynamics from a superstatistics perspective. Such a model entails a hierarchy between a low-level observation model and a high-level transition model. The observation model describes the local behavior of a system, and the transition model specifies how the parameters of the observation model evolve over time. To overcome the estimation challenges resulting from the complexity of superstatistical models, we develop and validate a simulation-based deep learning method for Bayesian inference, which can recover both time-varying and time-invariant parameters. We first benchmark our method against two existing frameworks capable of estimating time-varying parameters. We then apply our method to fit a dynamic version of the diffusion decision model to long time series of human response times data. Our results show that the deep learning approach is very efficient in capturing the temporal dynamics of the model. Furthermore, we show that the erroneous assumption of static or homogeneous parameters will hide important temporal information.

Much of the knowledge encoded in transformer language models (LMs) may be expressed in terms of relations: relations between words and their synonyms, entities and their attributes, etc. We show that, for a subset of relations, this computation is well-approximated by a single linear transformation on the subject representation. Linear relation representations may be obtained by constructing a first-order approximation to the LM from a single prompt, and they exist for a variety of factual, commonsense, and linguistic relations. However, we also identify many cases in which LM predictions capture relational knowledge accurately, but this knowledge is not linearly encoded in their representations. Our results thus reveal a simple, interpretable, but heterogeneously deployed knowledge representation strategy in transformer LMs.

We analyze union-find using potential functions motivated by continuous algorithms, and give alternate proofs of the $O(\log\log{n})$, $O(\log^{*}n)$, $O(\log^{**}n)$, and $O(\alpha(n))$ amortized cost upper bounds. The proof of the $O(\log\log{n})$ amortized bound goes as follows. Let each node's potential be the square root of its size, i.e., the size of the subtree rooted from it. The overall potential increase is $O(n)$ because the node sizes increase geometrically along any tree path. When compressing a path, each node on the path satisfies that either its potential decreases by $\Omega(1)$, or its child's size along the path is less than the square root of its size: this can happen at most $O(\log\log{n})$ times along any tree path.

Structure-preserving bisimilarity is a truly concurrent behavioral equivalence for finite Petri nets, which relates markings (of the same size only) generating the same causal nets, hence also the same partial orders of events. The process algebra FNM truly represents all (and only) the finite Petri nets, up to isomorphism. We prove that structure-preserving bisimilarity is a congruence w.r.t. the FMN operators, In this way, we have defined a compositional semantics, fully respecting causality and the branching structure of systems, for the class of all the finite Petri nets. Moreover, we study some algebraic properties of structure-preserving bisimilarity, that are at the base of a sound (but incomplete) axiomatization over FNM process terms.

As set systems, hypergraphs are omnipresent and have various representations ranging from Euler and Venn diagrams to contact representations. In a geometric representation of a hypergraph $H=(V,E)$, each vertex $v\in V$ is associated with a point $p_v\in \mathbb{R}^d$ and each hyperedge $e\in E$ is associated with a connected set $s_e\subset \mathbb{R}^d$ such that $\{p_v\mid v\in V\}\cap s_e=\{p_v\mid v\in e\}$ for all $e\in E$. We say that a given hypergraph $H$ is representable by some (infinite) family $F$ of sets in $\mathbb{R}^d$, if there exist $P\subset \mathbb{R}^d$ and $S \subseteq F$ such that $(P,S)$ is a geometric representation of $H$. For a family F, we define RECOGNITION(F) as the problem to determine if a given hypergraph is representable by F. It is known that the RECOGNITION problem is $\exists\mathbb{R}$-hard for halfspaces in $\mathbb{R}^d$. We study the families of translates of balls and ellipsoids in $\mathbb{R}^d$, as well as of other convex sets, and show that their RECOGNITION problems are also $\exists\mathbb{R}$-complete. This means that these recognition problems are equivalent to deciding whether a multivariate system of polynomial equations with integer coefficients has a real solution.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司