In this paper, we formalize an optimization framework for analog beamforming in the context of monostatic integrated sensing and communication (ISAC), where we also address the problem of self-interference in the analog domain. As a result, we derive semidefinite programs to approach detection-optimal transmit and receive beamformers, and we devise a superiorized iterative projection algorithm to approximate them. Our simulations show that this approach outperforms the detection performance of well-known design techniques for ISAC beamforming, while it achieves satisfactory self-interference suppression.
Inspired by recent progress in dynamic programming approaches for weighted model counting, we investigate a dynamic-programming approach in the context of boolean realizability and synthesis, which takes a conjunctive-normal-form boolean formula over input and output variables, and aims at synthesizing witness functions for the output variables in terms of the inputs. We show how graded project-join trees, obtained via tree decomposition, can be used to compute a BDD representing the realizability set for the input formulas in a bottom-up order. We then show how the intermediate BDDs generated during realizability checking phase can be applied to synthesizing the witness functions in a top-down manner. An experimental evaluation of a solver -- DPSynth -- based on these ideas demonstrates that our approach for Boolean realizabilty and synthesis has superior time and space performance over a heuristics-based approach using same symbolic representations. We discuss the advantage on scalability of the new approach, and also investigate our findings on the performance of the DP framework.
In this paper, we initiate the study of local model reconstruction attacks for federated learning, where a honest-but-curious adversary eavesdrops the messages exchanged between a targeted client and the server, and then reconstructs the local/personalized model of the victim. The local model reconstruction attack allows the adversary to trigger other classical attacks in a more effective way, since the local model only depends on the client's data and can leak more private information than the global model learned by the server. Additionally, we propose a novel model-based attribute inference attack in federated learning leveraging the local model reconstruction attack. We provide an analytical lower-bound for this attribute inference attack. Empirical results using real world datasets confirm that our local reconstruction attack works well for both regression and classification tasks. Moreover, we benchmark our novel attribute inference attack against the state-of-the-art attacks in federated learning. Our attack results in higher reconstruction accuracy especially when the clients' datasets are heterogeneous. Our work provides a new angle for designing powerful and explainable attacks to effectively quantify the privacy risk in FL.
In this paper, we consider a cooperative sensing framework in the context of future multi-functional network with both communication and sensing ability, where one base station (BS) serves as a sensing transmitter and several nearby BSs serve as sensing receivers. Each receiver receives the sensing signal reflected by the target and communicates with the fusion center (FC) through a wireless multiple access channel (MAC) for cooperative target localization. To improve the localization performance, we present a hybrid information-signal domain cooperative sensing (HISDCS) design, where each sensing receiver transmits both the estimated time delay/effective reflecting coefficient and the received sensing signal sampled around the estimated time delay to the FC. Then, we propose to minimize the number of channel uses by utilizing an efficient Karhunen-Lo\'eve transformation (KLT) encoding scheme for signal quantization and proper node selection, under the Cram\'er-Rao lower bound (CRLB) constraint and the capacity limits of MAC. A novel matrix-inequality constrained successive convex approximation (MCSCA) algorithm is proposed to optimize the wireless backhaul resource allocation, together with a greedy strategy for node selection. Despite the high non-convexness of the considered problem, we prove that the proposed MCSCA algorithm is able to converge to the set of Karush-Kuhn-Tucker (KKT) solutions of a relaxed problem obtained by relaxing the discrete variables. Besides, a low-complexity quantization bit reallocation algorithm is designed, which does not perform explicit node selection, and is able to harvest most of the performance gain brought by HISDCS. Finally, numerical simulations are presented to show that the proposed HISDCS design is able to significantly outperform the baseline schemes.
In this paper, we study an under-explored but important factor of diffusion generative models, i.e., the combinatorial complexity. Data samples are generally high-dimensional, and for various structured generation tasks, there are additional attributes which are combined to associate with data samples. We show that the space spanned by the combination of dimensions and attributes is insufficiently sampled by existing training scheme of diffusion generative models, causing degraded test time performance. We present a simple fix to this problem by constructing stochastic processes that fully exploit the combinatorial structures, hence the name ComboStoc. Using this simple strategy, we show that network training is significantly accelerated across diverse data modalities, including images and 3D structured shapes. Moreover, ComboStoc enables a new way of test time generation which uses insynchronized time steps for different dimensions and attributes, thus allowing for varying degrees of control over them.
In this article, we establish the mathematical foundations for modeling the randomness of shapes and conducting statistical inference on shapes using the smooth Euler characteristic transform. Based on these foundations, we propose two chi-squared statistic-based algorithms for testing hypotheses on random shapes. Simulation studies are presented to validate our mathematical derivations and to compare our algorithms with state-of-the-art methods to demonstrate the utility of our proposed framework. As real applications, we analyze a data set of mandibular molars from four genera of primates and show that our algorithms have the power to detect significant shape differences that recapitulate known morphological variation across suborders. Altogether, our discussions bridge the following fields: algebraic and computational topology, probability theory and stochastic processes, Sobolev spaces and functional analysis, analysis of variance for functional data, and geometric morphometrics.
In this paper, we present the derivation of a multicontinuum model for the coupled flow and transport equations by applying multicontinuum homogenization. We perform the multicontinuum expansion for both flow and transport solutions and formulate novel coupled constraint cell problems to capture the multiscale property, where oversampled regions are utilized to avoid boundary effects. Assuming the smoothness of macroscopic variables, we obtain a multicontinuum system composed of macroscopic elliptic equations and convection-diffusion-reaction equations with homogenized effective properties. Finally, we present numerical results for various coefficient fields and boundary conditions to validate our proposed algorithm.
In this paper, we study the contextual multinomial logit (MNL) bandit problem in which a learning agent sequentially selects an assortment based on contextual information, and user feedback follows an MNL choice model. There has been a significant discrepancy between lower and upper regret bounds, particularly regarding the feature dimension $d$ and the maximum assortment size $K$. Additionally, the variation in reward structures between these bounds complicates the quest for optimality. Under uniform rewards, where all items have the same expected reward, we establish a regret lower bound of $\Omega(d\sqrt{\smash[b]{T/K}})$ and propose a constant-time algorithm, OFU-MNL+, that achieves a matching upper bound of $\tilde{O}(d\sqrt{\smash[b]{T/K}})$. Under non-uniform rewards, we prove a lower bound of $\Omega(d\sqrt{T})$ and an upper bound of $\tilde{O}(d\sqrt{T})$, also achievable by OFU-MNL+. Our empirical studies support these theoretical findings. To the best of our knowledge, this is the first work in the contextual MNL bandit literature to prove minimax optimality -- for either uniform or non-uniform reward setting -- and to propose a computationally efficient algorithm that achieves this optimality up to logarithmic factors.
In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.
In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.