亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Variational inference, such as the mean-field (MF) approximation, requires certain conjugacy structures for efficient computation. These can impose unnecessary restrictions on the viable prior distribution family and further constraints on the variational approximation family. In this work, we introduce a general computational framework to implement MF variational inference for Bayesian models, with or without latent variables, using the Wasserstein gradient flow (WGF), a modern mathematical technique for realizing a gradient flow over the space of probability measures. Theoretically, we analyze the algorithmic convergence of the proposed approaches, providing an explicit expression for the contraction factor. We also strengthen existing results on MF variational posterior concentration from a polynomial to an exponential contraction, by utilizing the fixed point equation of the time-discretized WGF. Computationally, we propose a new constraint-free function approximation method using neural networks to numerically realize our algorithm. This method is shown to be more precise and efficient than traditional particle approximation methods based on Langevin dynamics.

相關內容

In predictive modeling with simulation or machine learning, it is critical to accurately assess the quality of estimated values through output analysis. In recent decades output analysis has become enriched with methods that quantify the impact of input data uncertainty in the model outputs to increase robustness. However, most developments are applicable assuming that the input data adheres to a parametric family of distributions. We propose a unified output analysis framework for simulation and machine learning outputs through the lens of Monte Carlo sampling. This framework provides nonparametric quantification of the variance and bias induced in the outputs with higher-order accuracy. Our new bias-corrected estimation from the model outputs leverages the extension of fast iterative bootstrap sampling and higher-order influence functions. For the scalability of the proposed estimation methods, we devise budget-optimal rules and leverage control variates for variance reduction. Our theoretical and numerical results demonstrate a clear advantage in building more robust confidence intervals from the model outputs with higher coverage probability.

Penetration testing, an essential component of cybersecurity, allows organizations to proactively identify and remediate vulnerabilities in their systems, thus bolstering their defense mechanisms against potential cyberattacks. One recent advancement in the realm of penetration testing is the utilization of Language Models (LLMs). We explore the intersection of LLMs and penetration testing to gain insight into their capabilities and challenges in the context of privilige escalation. We create an automated Linux privilege-escalation benchmark utilizing local virtual machines. We introduce an LLM-guided privilege-escalation tool designed for evaluating different LLMs and prompt strategies against our benchmark. We analyze the impact of different prompt designs, the benefits of in-context learning, and the advantages of offering high-level guidance to LLMs. We discuss challenging areas for LLMs, including maintaining focus during testing, coping with errors, and finally comparing them with both stochastic parrots as well as with human hackers.

An automated resource analysis technique is introduced, targeting a Call-By-Push-Value abstract machine, with memory prediction as a practical goal. The machine has a polymorphic and linear type system enhanced with a first-order logical fragment, which encodes both low-level operational semantics of resource manipulations and high-level synthesis of algorithmic complexity. Resource analysis must involve a diversity of static analysis, for escape, aliasing, algorithmic invariants, and more. Knowing this, we implement the Automated Amortized Resource Analysis framework (AARA) from scratch in our generic system. In this setting, access to resources is a state-passing effect which produces a compile-time approximation of runtime resource usage. We implemented type inference constraint generation for our calculus, accompanied with an elaboration of bounds for iterators on algebraic datatypes, for minimal ML-style programming languages with Call-by-Value and Call-By-Push-Value semantics. The closed-formed bounds are derived as multivariate polynomials over the integers. This now serves as a base for the development of an experimental toolkit for automated memory analysis of functional languages.

Deep hashing has been intensively studied and successfully applied in large-scale image retrieval systems due to its efficiency and effectiveness. Recent studies have recognized that the existence of adversarial examples poses a security threat to deep hashing models, that is, adversarial vulnerability. Notably, it is challenging to efficiently distill reliable semantic representatives for deep hashing to guide adversarial learning, and thereby it hinders the enhancement of adversarial robustness of deep hashing-based retrieval models. Moreover, current researches on adversarial training for deep hashing are hard to be formalized into a unified minimax structure. In this paper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the adversarial robustness of deep hashing models. Specifically, we conceive a discriminative mainstay features learning (DMFL) scheme to construct semantic representatives for guiding adversarial learning in deep hashing. Particularly, our DMFL with the strict theoretical guarantee is adaptively optimized in a discriminative learning manner, where both discriminative and semantic properties are jointly considered. Moreover, adversarial examples are fabricated by maximizing the Hamming distance between the hash codes of adversarial samples and mainstay features, the efficacy of which is validated in the adversarial attack trials. Further, we, for the first time, formulate the formalized adversarial training of deep hashing into a unified minimax optimization under the guidance of the generated mainstay codes. Extensive experiments on benchmark datasets show superb attack performance against the state-of-the-art algorithms, meanwhile, the proposed adversarial training can effectively eliminate adversarial perturbations for trustworthy deep hashing-based retrieval. Our code is available at //github.com/xandery-geek/SAAT.

Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, by using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.

This paper presents a theoretical analysis of linear interpolation as a principled method for stabilizing (large-scale) neural network training. We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear interpolation can help by leveraging the theory of nonexpansive operators. We construct a new optimization scheme called relaxed approximate proximal point (RAPP), which is the first explicit method to achieve last iterate convergence rates for the full range of cohypomonotone problems. The construction extends to constrained and regularized settings. By replacing the inner optimizer in RAPP we rediscover the family of Lookahead algorithms for which we establish convergence in cohypomonotone problems even when the base optimizer is taken to be gradient descent ascent. The range of cohypomonotone problems in which Lookahead converges is further expanded by exploiting that Lookahead inherits the properties of the base optimizer. We corroborate the results with experiments on generative adversarial networks which demonstrates the benefits of the linear interpolation present in both RAPP and Lookahead.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司