亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we present novel protocols over rings for semi-honest secure three-party computation (3-PC) and malicious four-party computation (4-PC) with one corruption. Compared to state-of-the-art protocols in the same setting, our protocols require fewer low-latency and high-bandwidth links between the parties to achieve high throughput. Our protocols also reduce the computational complexity by requiring up to 50 percent fewer basic instructions per gate. Further, our protocols achieve the currently best-known communication complexity (3, resp. 5 elements per multiplication gate) with an optional preprocessing phase to reduce the communication complexity of the online phase to 2 (resp. 3) elements per multiplication gate. In homogeneous network settings, i.e. all links between the parties share similar network bandwidth and latency, our protocols achieve up to two times higher throughput than state-of-the-art protocols. In heterogeneous network settings, i.e. all links between the parties share different network bandwidth and latency, our protocols achieve even larger performance improvements. We implemented our protocols and multiple other state-of-the-art protocols (Replicated 3-PC, Astra, Fantastic Four, Tetrad) in a novel open-source C++ framework optimized for achieving high throughput. Five out of six implemented 3-PC and 4-PC protocols achieve more than one billion 32-bit multiplication or more than 32 billion AND gates per second using our implementation in a 25 Gbit/s LAN environment. This is the highest throughput achieved in 3-PC and 4-PC so far and between two and three orders of magnitude higher than the throughput MP-SPDZ achieves in the same settings.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In this paper, we consider the problem of testing equality of the covariance matrices of L complex Gaussian multivariate time series of dimension $M$ . We study the special case where each of the L covariance matrices is modeled as a rank K perturbation of the identity matrix, corresponding to a signal plus noise model. A new test statistic based on the estimates of the eigenvalues of the different covariance matrices is proposed. In particular, we show that this statistic is consistent and with controlled type I error in the high-dimensional asymptotic regime where the sample sizes $N_1,\ldots,N_L$ of each time series and the dimension $M$ both converge to infinity at the same rate, while $K$ and $L$ are kept fixed. We also provide some simulations on synthetic and real data (SAR images) which demonstrate significant improvements over some classical methods such as the GLRT, or other alternative methods relevant for the high-dimensional regime and the low-rank model.

In this work, we explicitly show that modern LLMs tend to generate correct facts first, then "drift away" and generate incorrect facts later: this was occasionally observed but never properly measured. We develop a semantic drift score that measures the degree of separation between correct and incorrect facts in generated texts and confirm our hypothesis when generating Wikipedia-style biographies. This correct-then-incorrect generation pattern suggests that factual accuracy can be improved by knowing when to stop generation. Therefore, we explore the trade-off between information quantity and factual accuracy for several early stopping methods and manage to improve factuality by a large margin. We further show that reranking with semantic similarity can further improve these results, both compared to the baseline and when combined with early stopping. Finally, we try calling external API to bring the model back to the right generation path, but do not get positive results. Overall, our methods generalize and can be applied to any long-form text generation to produce more reliable information, by balancing trade-offs between factual accuracy, information quantity and computational cost.

In this work, we introduce a pioneering research challenge: evaluating positive and potentially harmful messages within music products. We initiate by setting a multi-faceted, multi-task benchmark for music content assessment. Subsequently, we introduce an efficient multi-task predictive model fortified with ordinality-enforcement to address this challenge. Our findings reveal that the proposed method not only significantly outperforms robust task-specific alternatives but also possesses the capability to assess multiple aspects simultaneously. Furthermore, through detailed case studies, where we employed Large Language Models (LLMs) as surrogates for content assessment, we provide valuable insights to inform and guide future research on this topic. The code for dataset creation and model implementation is publicly available at //github.com/RiTUAL-UH/music-message-assessment.

In this work, we present the MM-MATH dataset, a novel benchmark developed to rigorously evaluate the performance of advanced large language and multimodal models - including but not limited to GPT-4, GPT-4V, and Claude - within the domain of geometric computation. This dataset comprises 5,929 meticulously crafted geometric problems, each paired with a corresponding image, aimed at mirroring the complexity and requirements typical of ninth-grade mathematics. The motivation behind MM-MATH stems from the burgeoning interest and significant strides in multimodal technology, which necessitates a paradigm shift in assessment methodologies from mere outcome analysis to a more holistic evaluation encompassing reasoning and procedural correctness. Despite impressive gains in various benchmark performances, our analysis uncovers a persistent and notable deficiency in these models' ability to parse and interpret geometric information accurately from images, accounting for over 60% of observed errors. By deploying a dual-focused evaluation approach, examining both the end results and the underlying problem-solving processes, we unearthed a marked discrepancy between the capabilities of current multimodal models and human-level proficiency. The introduction of MM-MATH represents a tripartite contribution to the field: it not only serves as a comprehensive and challenging benchmark for assessing geometric problem-solving prowess but also illuminates critical gaps in textual and visual comprehension that current models exhibit. Through this endeavor, we aspire to catalyze further research and development aimed at bridging these gaps, thereby advancing the state of multimodal model capabilities to new heights.

In this paper, we introduce Neural-ABC, a novel parametric model based on neural implicit functions that can represent clothed human bodies with disentangled latent spaces for identity, clothing, shape, and pose. Traditional mesh-based representations struggle to represent articulated bodies with clothes due to the diversity of human body shapes and clothing styles, as well as the complexity of poses. Our proposed model provides a unified framework for parametric modeling, which can represent the identity, clothing, shape and pose of the clothed human body. Our proposed approach utilizes the power of neural implicit functions as the underlying representation and integrates well-designed structures to meet the necessary requirements. Specifically, we represent the underlying body as a signed distance function and clothing as an unsigned distance function, and they can be uniformly represented as unsigned distance fields. Different types of clothing do not require predefined topological structures or classifications, and can follow changes in the underlying body to fit the body. Additionally, we construct poses using a controllable articulated structure. The model is trained on both open and newly constructed datasets, and our decoupling strategy is carefully designed to ensure optimal performance. Our model excels at disentangling clothing and identity in different shape and poses while preserving the style of the clothing. We demonstrate that Neural-ABC fits new observations of different types of clothing. Compared to other state-of-the-art parametric models, Neural-ABC demonstrates powerful advantages in the reconstruction of clothed human bodies, as evidenced by fitting raw scans, depth maps and images. We show that the attributes of the fitted results can be further edited by adjusting their identities, clothing, shape and pose codes.

We use the PAC-Bayesian theory for the setting of learning-to-optimize. To the best of our knowledge, we present the first framework to learn optimization algorithms with provable generalization guarantees (PAC-Bayesian bounds) and explicit trade-off between convergence guarantees and convergence speed, which contrasts with the typical worst-case analysis. Our learned optimization algorithms provably outperform related ones derived from a (deterministic) worst-case analysis. The results rely on PAC-Bayesian bounds for general, possibly unbounded loss-functions based on exponential families. Then, we reformulate the learning procedure into a one-dimensional minimization problem and study the possibility to find a global minimum. Furthermore, we provide a concrete algorithmic realization of the framework and new methodologies for learning-to-optimize, and we conduct four practically relevant experiments to support our theory. With this, we showcase that the provided learning framework yields optimization algorithms that provably outperform the state-of-the-art by orders of magnitude.

In this work, we introduce DeepIPC, a novel end-to-end model tailored for autonomous driving, which seamlessly integrates perception and control tasks. Unlike traditional models that handle these tasks separately, DeepIPC innovatively combines a perception module, which processes RGBD images for semantic segmentation and generates bird's eye view (BEV) mappings, with a controller module that utilizes these insights along with GNSS and angular speed measurements to accurately predict navigational waypoints. This integration allows DeepIPC to efficiently translate complex environmental data into actionable driving commands. Our comprehensive evaluation demonstrates DeepIPC's superior performance in terms of drivability and multi-task efficiency across diverse real-world scenarios, setting a new benchmark for end-to-end autonomous driving systems with a leaner model architecture. The experimental results underscore DeepIPC's potential to significantly enhance autonomous vehicular navigation, promising a step forward in the development of autonomous driving technologies. For further insights and replication, we will make our code and datasets available at //github.com/oskarnatan/DeepIPC.

In this work, we consider rather general and broad class of Markov chains, Ito chains, that look like Euler-Maryama discretization of some Stochastic Differential Equation. The chain we study is a unified framework for theoretical analysis. It comes with almost arbitrary isotropic and state-dependent noise instead of normal and state-independent one as in most related papers. Moreover, in our chain the drift and diffusion coefficient can be inexact in order to cover wide range of applications as Stochastic Gradient Langevin Dynamics, sampling, Stochastic Gradient Descent or Stochastic Gradient Boosting. We prove the bound in $W_{2}$-distance between the laws of our Ito chain and corresponding differential equation. These results improve or cover most of the known estimates. And for some particular cases, our analysis is the first.

In this work, we study integrated sensing and communication (ISAC) networks intending to effectively balance sensing and communication (S&C) performance at the network level. Through the simultaneous utilization of multi-point (CoMP) coordinated joint transmission and distributed multiple-input multiple-output (MIMO) radar techniques, we propose a cooperative networked ISAC scheme to enhance both S&C services. Then, the tool of stochastic geometry is exploited to capture the S&C performance, which allows us to illuminate key cooperative dependencies in the ISAC network. Remarkably, the derived expression of the Cramer-Rao lower bound (CRLB) of the localization accuracy unveils a significant finding: Deploying $N$ ISAC transceivers yields an enhanced sensing performance across the entire network, in accordance with the $\ln^2N$ scaling law. Simulation results demonstrate that compared to the time-sharing scheme, the proposed cooperative ISAC scheme can effectively improve the average data rate and reduce the CRLB.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司