亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Globally, there is a substantial unmet need to diagnose various diseases effectively. The complexity of the different disease mechanisms and underlying symptoms of the patient population presents massive challenges to developing the early diagnosis tool and effective treatment. Machine Learning (ML), an area of Artificial Intelligence (AI), enables researchers, physicians, and patients to solve some of these issues. Based on relevant research, this review explains how Machine Learning (ML) and Deep Learning (DL) are being used to help in the early identification of numerous diseases. To begin, a bibliometric study of the publication is given using data from the Scopus and Web of Science (WOS) databases. The bibliometric study of 1216 publications was undertaken to determine the most prolific authors, nations, organizations, and most cited articles. The review then summarizes the most recent trends and approaches in Machine Learning-based Disease Diagnosis (MLBDD), considering the following factors: algorithm, disease types, data type, application, and evaluation metrics. Finally, the paper highlights key results and provides insight into future trends and opportunities in the MLBDD area.

相關內容

機器(qi)學(xue)(xue)習(xi)(xi)(Machine Learning)是一個研(yan)究(jiu)計算學(xue)(xue)習(xi)(xi)方(fang)(fang)(fang)(fang)法(fa)(fa)(fa)的(de)(de)國際論(lun)壇。該雜志(zhi)發表(biao)文(wen)(wen)(wen)章,報告(gao)廣泛的(de)(de)學(xue)(xue)習(xi)(xi)方(fang)(fang)(fang)(fang)法(fa)(fa)(fa)應(ying)用于各種學(xue)(xue)習(xi)(xi)問題(ti)(ti)的(de)(de)實(shi)質性結果。該雜志(zhi)的(de)(de)特色論(lun)文(wen)(wen)(wen)描述(shu)(shu)研(yan)究(jiu)的(de)(de)問題(ti)(ti)和(he)方(fang)(fang)(fang)(fang)法(fa)(fa)(fa),應(ying)用研(yan)究(jiu)和(he)研(yan)究(jiu)方(fang)(fang)(fang)(fang)法(fa)(fa)(fa)的(de)(de)問題(ti)(ti)。有關學(xue)(xue)習(xi)(xi)問題(ti)(ti)或(huo)方(fang)(fang)(fang)(fang)法(fa)(fa)(fa)的(de)(de)論(lun)文(wen)(wen)(wen)通過實(shi)證(zheng)研(yan)究(jiu)、理論(lun)分(fen)析或(huo)與心(xin)理現象的(de)(de)比較提供了(le)堅實(shi)的(de)(de)支持。應(ying)用論(lun)文(wen)(wen)(wen)展示(shi)了(le)如何應(ying)用學(xue)(xue)習(xi)(xi)方(fang)(fang)(fang)(fang)法(fa)(fa)(fa)來(lai)解(jie)決(jue)重要的(de)(de)應(ying)用問題(ti)(ti)。研(yan)究(jiu)方(fang)(fang)(fang)(fang)法(fa)(fa)(fa)論(lun)文(wen)(wen)(wen)改(gai)進了(le)機器(qi)學(xue)(xue)習(xi)(xi)的(de)(de)研(yan)究(jiu)方(fang)(fang)(fang)(fang)法(fa)(fa)(fa)。所有的(de)(de)論(lun)文(wen)(wen)(wen)都以其他(ta)研(yan)究(jiu)人(ren)員可以驗(yan)證(zheng)或(huo)復制的(de)(de)方(fang)(fang)(fang)(fang)式(shi)描述(shu)(shu)了(le)支持證(zheng)據。論(lun)文(wen)(wen)(wen)還詳(xiang)細說明了(le)學(xue)(xue)習(xi)(xi)的(de)(de)組成部分(fen),并討論(lun)了(le)關于知識表(biao)示(shi)和(he)性能任務的(de)(de)假設。 官網地址:

Anomalies represent rare observations (e.g., data records or events) that deviate significantly from others. Over several decades, research on anomaly mining has received increasing interests due to the implications of these occurrences in a wide range of disciplines. Anomaly detection, which aims to identify rare observations, is among the most vital tasks in the world, and has shown its power in preventing detrimental events, such as financial fraud, network intrusion, and social spam. The detection task is typically solved by identifying outlying data points in the feature space and inherently overlooks the relational information in real-world data. Graphs have been prevalently used to represent the structural information, which raises the graph anomaly detection problem - identifying anomalous graph objects (i.e., nodes, edges and sub-graphs) in a single graph, or anomalous graphs in a database/set of graphs. However, conventional anomaly detection techniques cannot tackle this problem well because of the complexity of graph data. For the advent of deep learning, graph anomaly detection with deep learning has received a growing attention recently. In this survey, we aim to provide a systematic and comprehensive review of the contemporary deep learning techniques for graph anomaly detection. We compile open-sourced implementations, public datasets, and commonly-used evaluation metrics to provide affluent resources for future studies. More importantly, we highlight twelve extensive future research directions according to our survey results covering unsolved and emerging research problems and real-world applications. With this survey, our goal is to create a "one-stop-shop" that provides a unified understanding of the problem categories and existing approaches, publicly available hands-on resources, and high-impact open challenges for graph anomaly detection using deep learning.

Nowadays, machine learning is playing a crucial role in harnessing the power of the massive amounts of data that we are currently producing every day in our digital world. With the booming demand for machine learning applications, it has been recognized that the number of knowledgeable data scientists can not scale with the growing data volumes and application needs in our digital world. In response to this demand, several automated machine learning (AutoML) techniques and frameworks have been developed to fill the gap of human expertise by automating the process of building machine learning pipelines. In this study, we present a comprehensive evaluation and comparison of the performance characteristics of six popular AutoML frameworks, namely, Auto-Weka, AutoSKlearn, TPOT, Recipe, ATM, and SmartML across 100 data sets from established AutoML benchmark suites. Our experimental evaluation considers different aspects for its comparison including the performance impact of several design decisions including time budget, size of search space, meta-learning, and ensemble construction. The results of our study reveal various interesting insights that can significantly guide and impact the design of AutoML frameworks.

Recent times are witnessing rapid development in machine learning algorithm systems, especially in reinforcement learning, natural language processing, computer and robot vision, image processing, speech, and emotional processing and understanding. In tune with the increasing importance and relevance of machine learning models, algorithms, and their applications, and with the emergence of more innovative uses cases of deep learning and artificial intelligence, the current volume presents a few innovative research works and their applications in real world, such as stock trading, medical and healthcare systems, and software automation. The chapters in the book illustrate how machine learning and deep learning algorithms and models are designed, optimized, and deployed. The volume will be useful for advanced graduate and doctoral students, researchers, faculty members of universities, practicing data scientists and data engineers, professionals, and consultants working on the broad areas of machine learning, deep learning, and artificial intelligence.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

This paper reviews recent studies in understanding neural-network representations and learning neural networks with interpretable/disentangled middle-layer representations. Although deep neural networks have exhibited superior performance in various tasks, the interpretability is always the Achilles' heel of deep neural networks. At present, deep neural networks obtain high discrimination power at the cost of low interpretability of their black-box representations. We believe that high model interpretability may help people to break several bottlenecks of deep learning, e.g., learning from very few annotations, learning via human-computer communications at the semantic level, and semantically debugging network representations. We focus on convolutional neural networks (CNNs), and we revisit the visualization of CNN representations, methods of diagnosing representations of pre-trained CNNs, approaches for disentangling pre-trained CNN representations, learning of CNNs with disentangled representations, and middle-to-end learning based on model interpretability. Finally, we discuss prospective trends in explainable artificial intelligence.

北京阿比特科技有限公司