亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ensembles of separate neural networks (NNs) have shown superior accuracy and confidence calibration over single NN across tasks. Recent methods compress ensembles within a single network via early exits or multi-input multi-output frameworks. However, the landscape of these methods is fragmented thus far, making it difficult to choose the right approach for a given task. Furthermore, the algorithmic performance of these methods is behind the ensemble of separate NNs and requires extensive architecture tuning. We propose a novel methodology unifying these approaches into a Single Architecture Ensemble (SAE). Our method learns the optimal number and depth of exits per ensemble input in a single NN. This enables the SAE framework to flexibly tailor its configuration for a given architecture or application. We evaluate SAEs on image classification and regression across various network architecture types and sizes. We demonstrate competitive accuracy or confidence calibration to baselines while reducing the compute operations or parameter count by up to $1.5{\sim}3.7\times$.

相關內容

We propose and carry-out a novel method of formative assessment called Assessment via Teaching (AVT), in which learners demonstrate their understanding of CS1 topics by tutoring more novice students. AVT has powerful benefits over traditional forms of assessment: it is centered around service to others and is highly rewarding for the learners who teach. Moreover, teaching greatly improves the learners' own understanding of the material and has a huge positive impact on novices, who receive free 1:1 tutoring. Lastly, this form of assessment is naturally difficult to cheat -- a critical property for assessments in the era of large-language models. We use AVT in a randomised control trial with learners in a CS1 course at an R1 university. The learners provide tutoring sessions to more novice students taking a lagged online version of the same course. We show that learners who do an AVT session before the course exam performed 20 to 30 percentage points better than the class average on several questions. Moreover, compared to students who did a practice exam, the AVT learners enjoyed their experience more and were twice as likely to study for their teaching session. We believe AVT is a scalable and uplifting method for formative assessment that could one day replace traditional exams.

Deep neural networks (DNNs) are becoming progressively large and costly to train. This paper aims to reduce DNN training costs by leveraging preemptible instances on modern clouds, which can be allocated at a much lower price when idle but may be preempted by the cloud provider at any time. Prior work that supports DNN training on preemptive instances employs a reactive approach to handling instance preemptions and allocations after their occurrence, which only achieves limited performance and scalability. We present Parcae, a system that enables cheap, fast, and scalable DNN training on preemptible instances by proactively adjusting the parallelization strategy of a DNN training job to adapt to predicted resource changes before instance preemptions and allocations really happen, which significantly reduces the cost of handling these events. Parcae optimizes liveput, a novel metric that measures the expected training throughput of a DNN job under various possible preemption scenarios. Compared to existing reactive, throughput-optimized systems, Parcae's proactive, live-optimized solution considers both the throughput of a job and its robustness under preemptions. To optimize liveput, Parcae supports lightweight instance migration and uses an availability predictor to forecast future preemptions. It then uses a liveput optimizer to discover an optimal strategy to parallelize DNN training under predicted preemptions. We evaluate Parcae on a variety of DNNs and preemption traces and show that Parcae outperforms existing spot-instance DNN training systems by up to 10$\times$. More importantly, Parcae achieves near-optimal performance for training large DNNs under frequent preemptions, in which case existing approaches cannot make any progress.

The advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes.

Despite tremendous progress in the field of text-to-video (T2V) synthesis, open-sourced T2V diffusion models struggle to generate longer videos with dynamically varying and evolving content. They tend to synthesize quasi-static videos, ignoring the necessary visual change-over-time implied in the text prompt. At the same time, scaling these models to enable longer, more dynamic video synthesis often remains computationally intractable. To address this challenge, we introduce the concept of Generative Temporal Nursing (GTN), where we aim to alter the generative process on the fly during inference to improve control over the temporal dynamics and enable generation of longer videos. We propose a method for GTN, dubbed VSTAR, which consists of two key ingredients: 1) Video Synopsis Prompting (VSP) - automatic generation of a video synopsis based on the original single prompt leveraging LLMs, which gives accurate textual guidance to different visual states of longer videos, and 2) Temporal Attention Regularization (TAR) - a regularization technique to refine the temporal attention units of the pre-trained T2V diffusion models, which enables control over the video dynamics. We experimentally showcase the superiority of the proposed approach in generating longer, visually appealing videos over existing open-sourced T2V models. We additionally analyze the temporal attention maps realized with and without VSTAR, demonstrating the importance of applying our method to mitigate neglect of the desired visual change over time.

The rapid integration of Large Language Models (LLMs) across diverse sectors has marked a transformative era, showcasing remarkable capabilities in text generation and problem-solving tasks. However, this technological advancement is accompanied by significant risks and vulnerabilities. Despite ongoing security enhancements, attackers persistently exploit these weaknesses, casting doubts on the overall trustworthiness of LLMs. Compounding the issue, organisations are deploying LLM-integrated systems without understanding the severity of potential consequences. Existing studies by OWASP and MITRE offer a general overview of threats and vulnerabilities but lack a method for directly and succinctly analysing the risks for security practitioners, developers, and key decision-makers who are working with this novel technology. To address this gap, we propose a risk assessment process using tools like the OWASP risk rating methodology which is used for traditional systems. We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors. Through this analysis, we assess the likelihood of a cyberattack. Subsequently, we conduct a thorough impact analysis to derive a comprehensive threat matrix. We also map threats against three key stakeholder groups: developers engaged in model fine-tuning, application developers utilizing third-party APIs, and end users. The proposed threat matrix provides a holistic evaluation of LLM-related risks, enabling stakeholders to make informed decisions for effective mitigation strategies. Our outlined process serves as an actionable and comprehensive tool for security practitioners, offering insights for resource management and enhancing the overall system security.

Medical vision-language pretraining models (VLPM) have achieved remarkable progress in fusing chest X-rays (CXR) with clinical texts, introducing image-text data binding approaches that enable zero-shot learning and downstream clinical tasks. However, the current landscape lacks the holistic integration of additional medical modalities, such as electrocardiograms (ECG). We present MEDBind (Medical Electronic patient recorD), which learns joint embeddings across CXR, ECG, and medical text. Using text data as the central anchor, MEDBind features tri-modality binding, delivering competitive performance in top-K retrieval, zero-shot, and few-shot benchmarks against established VLPM, and the ability for CXR-to-ECG zero-shot classification and retrieval. This seamless integration is achieved through combination of contrastive loss on modality-text pairs with our proposed contrastive loss function, Edge-Modality Contrastive Loss, fostering a cohesive embedding space for CXR, ECG, and text. Finally, we demonstrate that MEDBind can improve downstream tasks by directly integrating CXR and ECG embeddings into a large-language model for multimodal prompt tuning.

The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.

The Internet of Things (IoT) boom has revolutionized almost every corner of people's daily lives: healthcare, home, transportation, manufacturing, supply chain, and so on. With the recent development of sensor and communication technologies, IoT devices including smart wearables, cameras, smartwatches, and autonomous vehicles can accurately measure and perceive their surrounding environment. Continuous sensing generates massive amounts of data and presents challenges for machine learning. Deep learning models (e.g., convolution neural networks and recurrent neural networks) have been extensively employed in solving IoT tasks by learning patterns from multi-modal sensory data. Graph Neural Networks (GNNs), an emerging and fast-growing family of neural network models, can capture complex interactions within sensor topology and have been demonstrated to achieve state-of-the-art results in numerous IoT learning tasks. In this survey, we present a comprehensive review of recent advances in the application of GNNs to the IoT field, including a deep dive analysis of GNN design in various IoT sensing environments, an overarching list of public data and source code from the collected publications, and future research directions. To keep track of newly published works, we collect representative papers and their open-source implementations and create a Github repository at //github.com/GuiminDong/GNN4IoT.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

北京阿比特科技有限公司