Few-shot classification (FSC) entails learning novel classes given only a few examples per class after a pre-training (or meta-training) phase on a set of base classes. Recent works have shown that simply fine-tuning a pre-trained Vision Transformer (ViT) on new test classes is a strong approach for FSC. Fine-tuning ViTs, however, is expensive in time, compute and storage. This has motivated the design of parameter efficient fine-tuning (PEFT) methods which fine-tune only a fraction of the Transformer's parameters. While these methods have shown promise, inconsistencies in experimental conditions make it difficult to disentangle their advantage from other experimental factors including the feature extractor architecture, pre-trained initialization and fine-tuning algorithm, amongst others. In our paper, we conduct a large-scale, experimentally consistent, empirical analysis to study PEFTs for few-shot image classification. Through a battery of over 1.8k controlled experiments on large-scale few-shot benchmarks including Meta-Dataset (MD) and ORBIT, we uncover novel insights on PEFTs that cast light on their efficacy in fine-tuning ViTs for few-shot classification. Through our controlled empirical study, we have two main findings: (i) Fine-tuning just the LayerNorm parameters (which we call LN-Tune) during few-shot adaptation is an extremely strong baseline across ViTs pre-trained with both self-supervised and supervised objectives, (ii) For self-supervised ViTs, we find that simply learning a set of scaling parameters for each attention matrix (which we call AttnScale) along with a domain-residual adapter (DRA) module leads to state-of-the-art performance (while being $\sim\!$ 9$\times$ more parameter-efficient) on MD. Our extensive empirical findings set strong baselines and call for rethinking the current design of PEFT methods for FSC.
The field of text generation suffers from a severe shortage of labeled data due to the extremely expensive and time consuming process involved in manual annotation. A natural approach for coping with this problem is active learning (AL), a well-known machine learning technique for improving annotation efficiency by selectively choosing the most informative examples to label. However, while AL has been well-researched in the context of text classification, its application to text generation remained largely unexplored. In this paper, we present a first systematic study of active learning for text generation, considering a diverse set of tasks and multiple leading AL strategies. Our results indicate that existing AL strategies, despite their success in classification, are largely ineffective for the text generation scenario, and fail to consistently surpass the baseline of random example selection. We highlight some notable differences between the classification and generation scenarios, and analyze the selection behaviors of existing AL strategies. Our findings motivate exploring novel approaches for applying AL to NLG tasks.
Despite achieving remarkable performance on various vision-language tasks, Transformer-based pretrained vision-language models (VLMs) still suffer from efficiency issues arising from long inputs and numerous parameters, limiting their real-world applications. However, the huge computation is redundant for most samples and the degree of redundancy and the respective components vary significantly depending on tasks and input instances. In this work, we propose an adaptive acceleration method SmartTrim for VLMs, which adjusts the inference overhead based on the complexity of instances. Specifically, SmartTrim incorporates lightweight trimming modules into the backbone to perform task-specific pruning on redundant inputs and parameters, without the need for additional pre-training or data augmentation. Since visual and textual representations complement each other in VLMs, we propose to leverage cross-modal interaction information to provide more critical semantic guidance for identifying redundant parts. Meanwhile, we introduce a self-distillation strategy that encourages the trimmed model to be consistent with the full-capacity model, which yields further performance gains. Experimental results demonstrate that SmartTrim significantly reduces the computation overhead (2-3 times) of various VLMs with comparable performance (only a 1-2% degradation) on various vision-language tasks. Compared to previous acceleration methods, SmartTrim attains a better efficiency-performance trade-off, demonstrating great potential for application in resource-constrained scenarios.
Large Language Models (LLMs) have shown enhanced capabilities of solving novel tasks by reasoning step-by-step known as Chain-of-Thought (CoT) reasoning; how can we instill the same capability of reasoning step-by-step on unseen tasks into LMs that possess less than <100B parameters? To address this question, we first introduce the CoT Collection, a new instruction-tuning dataset that augments 1.88 million CoT rationales across 1,060 tasks. We show that continually fine-tuning Flan-T5 (3B & 11B) with the CoT Collection enables the 3B & 11B LMs to perform CoT better on unseen tasks, leading to an improvement in the average zero-shot accuracy on 27 datasets of the BIG-Bench-Hard benchmark by +4.34% and +2.44%, respectively. Furthermore, we show that instruction tuning with CoT allows LMs to possess stronger few-shot learning capabilities, resulting in an improvement of +2.97% and +2.37% on 4 domain-specific tasks over Flan-T5 (3B & 11B), respectively. We make our CoT Collection data and our trained models publicly available at //github.com/kaist-lklab/CoT-Collection.
We present a comprehensive evaluation of Parameter-Efficient Fine-Tuning (PEFT) techniques for diverse medical image analysis tasks. PEFT is increasingly exploited as a valuable approach for knowledge transfer from pre-trained models in natural language processing, vision, speech, and cross-modal tasks, such as vision-language and text-to-image generation. However, its application in medical image analysis remains relatively unexplored. As foundation models are increasingly exploited in the medical domain, it is crucial to investigate and comparatively assess various strategies for knowledge transfer that can bolster a range of downstream tasks. Our study, the first of its kind (to the best of our knowledge), evaluates 16 distinct PEFT methodologies proposed for convolutional and transformer-based networks, focusing on image classification and text-to-image generation tasks across six medical datasets ranging in size, modality, and complexity. Through a battery of more than 600 controlled experiments, we demonstrate performance gains of up to 22% under certain scenarios and demonstrate the efficacy of PEFT for medical text-to-image generation. Further, we reveal the instances where PEFT methods particularly dominate over conventional fine-tuning approaches by studying their relationship with downstream data volume.
Cross-domain NER is a challenging task to address the low-resource problem in practical scenarios. Previous typical solutions mainly obtain a NER model by pre-trained language models (PLMs) with data from a rich-resource domain and adapt it to the target domain. Owing to the mismatch issue among entity types in different domains, previous approaches normally tune all parameters of PLMs, ending up with an entirely new NER model for each domain. Moreover, current models only focus on leveraging knowledge in one general source domain while failing to successfully transfer knowledge from multiple sources to the target. To address these issues, we introduce Collaborative Domain-Prefix Tuning for cross-domain NER (CP-NER) based on text-to-text generative PLMs. Specifically, we present text-to-text generation grounding domain-related instructors to transfer knowledge to new domain NER tasks without structural modifications. We utilize frozen PLMs and conduct collaborative domain-prefix tuning to stimulate the potential of PLMs to handle NER tasks across various domains. Experimental results on the Cross-NER benchmark show that the proposed approach has flexible transfer ability and performs better on both one-source and multiple-source cross-domain NER tasks. Codes are available in //github.com/zjunlp/DeepKE/tree/main/example/ner/cross.
This paper presents a parameter-efficient learning (PEL) to develop a low-resource accent adaptation for text-to-speech (TTS). A resource-efficient adaptation from a frozen pre-trained TTS model is developed by using only 1.2\% to 0.8\% of original trainable parameters to achieve competitive performance in voice synthesis. Motivated by a theoretical foundation of optimal transport (OT), this study carries out PEL for TTS where an auxiliary unsupervised loss based on OT is introduced to maximize a difference between the pre-trained source domain and the (unseen) target domain, in addition to its supervised training loss. Further, we leverage upon this unsupervised loss refinement to boost system performance via either sliced Wasserstein distance or maximum mean discrepancy. The merit of this work is demonstrated by fulfilling PEL solutions based on residual adapter learning, and model reprogramming when evaluating the Mandarin accent adaptation. Experiment results show that the proposed methods can achieve competitive naturalness with parameter-efficient decoder fine-tuning, and the auxiliary unsupervised loss improves model performance empirically.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.
Transformer model architectures have garnered immense interest lately due to their effectiveness across a range of domains like language, vision and reinforcement learning. In the field of natural language processing for example, Transformers have become an indispensable staple in the modern deep learning stack. Recently, a dizzying number of "X-former" models have been proposed - Reformer, Linformer, Performer, Longformer, to name a few - which improve upon the original Transformer architecture, many of which make improvements around computational and memory efficiency. With the aim of helping the avid researcher navigate this flurry, this paper characterizes a large and thoughtful selection of recent efficiency-flavored "X-former" models, providing an organized and comprehensive overview of existing work and models across multiple domains.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.