亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We describe team ielab from CSIRO and The University of Queensland's approach to the 2023 TREC Clinical Trials Track. Our approach was to use neural rankers but to utilise Large Language Models to overcome the issue of lack of training data for such rankers. Specifically, we employ ChatGPT to generate relevant patient descriptions for randomly selected clinical trials from the corpus. This synthetic dataset, combined with human-annotated training data from previous years, is used to train both dense and sparse retrievers based on PubmedBERT. Additionally, a cross-encoder re-ranker is integrated into the system. To further enhance the effectiveness of our approach, we prompting GPT-4 as a TREC annotator to provide judgments on our run files. These judgments are subsequently employed to re-rank the results. This architecture tightly integrates strong PubmedBERT-based rankers with the aid of SOTA Large Language Models, demonstrating a new approach to clinical trial retrieval.

相關內容

Charts play a vital role in data visualization, understanding data patterns, and informed decision-making. However, their unique combination of graphical elements (e.g., bars, lines) and textual components (e.g., labels, legends) poses challenges for general-purpose multimodal models. While vision-language models trained on chart data excel in comprehension, they struggle with generalization. To address these challenges, we propose ChartAssistant, a chart-based vision-language model for universal chart comprehension and reasoning. ChartAssistant leverages ChartSFT, a comprehensive dataset covering diverse chart-related tasks with basic (e.g. bars and pies) and specialized (e.g. radars, and bubbles) chart types. It undergoes a two-stage training process, starting with pre-training on chart-to-table parsing to align chart and text, followed by multitask instruction-following fine-tuning. This approach enables ChartAssistant to achieve competitive performance across various chart tasks. Experimental results demonstrate significant performance gains over the state-of-the-art UniChart and Chartllama method, especially outperforming them on real-world chart data with zero-shot setting. The code and data are available at //github.com/OpenGVLab/ChartAst.

Adversarial attacks represent a substantial challenge in Natural Language Processing (NLP). This study undertakes a systematic exploration of this challenge in two distinct phases: vulnerability evaluation and resilience enhancement of Transformer-based models under adversarial attacks. In the evaluation phase, we assess the susceptibility of three Transformer configurations, encoder-decoder, encoder-only, and decoder-only setups, to adversarial attacks of escalating complexity across datasets containing offensive language and misinformation. Encoder-only models manifest a 14% and 21% performance drop in offensive language detection and misinformation detection tasks, respectively. Decoder-only models register a 16% decrease in both tasks, while encoder-decoder models exhibit a maximum performance drop of 14% and 26% in the respective tasks. The resilience-enhancement phase employs adversarial training, integrating pre-camouflaged and dynamically altered data. This approach effectively reduces the performance drop in encoder-only models to an average of 5% in offensive language detection and 2% in misinformation detection tasks. Decoder-only models, occasionally exceeding original performance, limit the performance drop to 7% and 2% in the respective tasks. Although not surpassing the original performance, Encoder-decoder models can reduce the drop to an average of 6% and 2% respectively. Results suggest a trade-off between performance and robustness, with some models maintaining similar performance while gaining robustness. Our study and adversarial training techniques have been incorporated into an open-source tool for generating camouflaged datasets. However, methodology effectiveness depends on the specific camouflage technique and data encountered, emphasizing the need for continued exploration.

In this work, we propose an efficient Video-Language Alignment via Frame-Prompting and Distilling (VLAP) network. Our VLAP model addresses both efficient frame sampling and effective cross-modal alignment in a unified way. In our VLAP network, we design a new learnable question-aware Frame-Prompter together with a new cross-modal distillation (QFormer-Distiller) module. Pre-trained large image-language models have shown promising results on problems such as visual question answering. However, how to efficiently and effectively sample image frames when adapting pre-trained large image-language model to video-language alignment is still the major challenge. Compared with prior work, our VLAP model demonstrates the capability of selecting key frames with critical contents, thus improving the video-language alignment accuracy while reducing the inference latency (+3.3% on NExT-QA Temporal with 3.0X speed up). Overall, our VLAP network outperforms (e.g. +4.6% on STAR Interaction and +2.2% on STAR average with 3.0X speed up, ours 2-frames out-perform SeViLA 4-frames on VLEP with 4.2X speed up) the state-of-the-art methods on the video question-answering benchmarks.

Deep convolutional neural networks (CNNs) based approaches have achieved great performance in video matting. Many of these methods can produce accurate alpha estimation for the target body but typically yield fuzzy or incorrect target edges. This is usually caused by the following reasons: 1) The current methods always treat the target body and edge indiscriminately; 2) Target body dominates the whole target with only a tiny proportion target edge. For the first problem, we propose a CNN-based module that separately optimizes the matting target body and edge (SOBE). And on this basis, we introduce a real-time, trimap-free video matting method via progressively optimizing the matting target body and edge (POBEVM) that is much lighter than previous approaches and achieves significant improvements in the predicted target edge. For the second problem, we propose an Edge-L1-Loss (ELL) function that enforces our network on the matting target edge. Experiments demonstrate our method outperforms prior trimap-free matting methods on both Distinctions-646 (D646) and VideoMatte240K(VM) dataset, especially in edge optimization.

In this paper, we describe our approaches and results for Task 2 of the LT-EDI 2024 Workshop, aimed at detecting homophobia and/or transphobia across ten languages. Our methodologies include monolingual transformers and ensemble methods, capitalizing on the strengths of each to enhance the performance of the models. The ensemble models worked well, placing our team, MasonTigers, in the top five for eight of the ten languages, as measured by the macro F1 score. Our work emphasizes the efficacy of ensemble methods in multilingual scenarios, addressing the complexities of language-specific tasks.

Sixth-generation (6G) wireless communication systems, as stated in the European 6G flagship project Hexa-X, are anticipated to feature the integration of intelligence, communication, sensing, positioning, and computation. An important aspect of this integration is integrated sensing and communication (ISAC), in which the same waveform is used for both systems both sensing and communication, to address the challenge of spectrum scarcity. Recently, the orthogonal time frequency space (OTFS) waveform has been proposed to address OFDM's limitations due to the high Doppler spread in some future wireless communication systems. In this paper, we review existing OTFS waveforms for ISAC systems and provide some insights into future research. Firstly, we introduce the basic principles and a system model of OTFS and provide a foundational understanding of this innovative technology's core concepts and architecture. Subsequently, we present an overview of OTFS-based ISAC system frameworks. We provide a comprehensive review of recent research developments and the current state of the art in the field of OTFS-assisted ISAC systems to gain a thorough understanding of the current landscape and advancements. Furthermore, we perform a thorough comparison between OTFS-enabled ISAC operations and traditional OFDM, highlighting the distinctive advantages of OTFS, especially in high Doppler spread scenarios. Subsequently, we address the primary challenges facing OTFS-based ISAC systems, identifying potential limitations and drawbacks. Then, finally, we suggest future research directions, aiming to inspire further innovation in the 6G wireless communication landscape.

The integration of Large Language Models (LLMs) like GPT-4 into traditional Natural Language Processing (NLP) tasks has opened new avenues for enhancing model performance while reducing the reliance on extensive human annotations. This paper presents a novel approach that leverages the Chain of Thought (CoT) prompting technique to distill knowledge from GPT-4, subsequently applying it to improve the efficiency and effectiveness of a smaller model, BERT, on Named Entity Recognition (NER) tasks. Our method involves a two-phase training process: initially employing GPT-4 annotated data for pre-training and then refining the model with a combination of distilled and original human-annotated data. The results demonstrate that our mixed-training strategy significantly outperforms models trained solely on human annotations, achieving superior F1-scores and showcasing a cost-effective solution for resource-limited or closed-network settings. The study also discusses the challenges encountered, such as LLM output variability and the tendency towards hallucinations, proposing future work directions to enhance prompt design and annotation selection. Our findings indicate a promising synergy between LLM insights and traditional NLP techniques, paving the way for more accessible and robust NLP applications.

The primary goal of the L3DAS23 Signal Processing Grand Challenge at ICASSP 2023 is to promote and support collaborative research on machine learning for 3D audio signal processing, with a specific emphasis on 3D speech enhancement and 3D Sound Event Localization and Detection in Extended Reality applications. As part of our latest competition, we provide a brand-new dataset, which maintains the same general characteristics of the L3DAS21 and L3DAS22 datasets, but with first-order Ambisonics recordings from multiple reverberant simulated environments. Moreover, we start exploring an audio-visual scenario by providing images of these environments, as perceived by the different microphone positions and orientations. We also propose updated baseline models for both tasks that can now support audio-image couples as input and a supporting API to replicate our results. Finally, we present the results of the participants. Further details about the challenge are available at //www.l3das.com/icassp2023.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司