Remote sensing and artificial intelligence are pivotal technologies of precision agriculture nowadays. The efficient retrieval of large-scale field imagery combined with machine learning techniques shows success in various tasks like phenotyping, weeding, cropping, and disease control. This work will introduce a machine learning framework for automatized large-scale plant-specific trait annotation for the use case disease severity scoring for Cercospora Leaf Spot (CLS) in sugar beet. With concepts of Deep Label Distribution Learning (DLDL), special loss functions, and a tailored model architecture, we develop an efficient Vision Transformer based model for disease severity scoring called SugarViT. One novelty in this work is the combination of remote sensing data with environmental parameters of the experimental sites for disease severity prediction. Although the model is evaluated on this special use case, it is held as generic as possible to also be applicable to various image-based classification and regression tasks. With our framework, it is even possible to learn models on multi-objective problems as we show by a pretraining on environmental metadata.
Kernel techniques are among the most influential approaches in data science and statistics. Under mild conditions, the reproducing kernel Hilbert space associated to a kernel is capable of encoding the independence of $M\ge 2$ random variables. Probably the most widespread independence measure relying on kernels is the so-called Hilbert-Schmidt independence criterion (HSIC; also referred to as distance covariance in the statistics literature). Despite various existing HSIC estimators designed since its introduction close to two decades ago, the fundamental question of the rate at which HSIC can be estimated is still open. In this work, we prove that the minimax optimal rate of HSIC estimation on $\mathbb R^d$ for Borel measures containing the Gaussians with continuous bounded translation-invariant characteristic kernels is $\mathcal O\!\left(n^{-1/2}\right)$. Specifically, our result implies the optimality in the minimax sense of many of the most-frequently used estimators (including the U-statistic, the V-statistic, and the Nystr\"om-based one) on $\mathbb R^d$.
Self-admitted technical debt (SATD) refers to a form of technical debt in which developers explicitly acknowledge and document the existence of technical shortcuts, workarounds, or temporary solutions within the codebase. Over recent years, researchers have manually labeled datasets derived from various software development artifacts: source code comments, messages from the issue tracker and pull request sections, and commit messages. These datasets are designed for training, evaluation, performance validation, and improvement of machine learning and deep learning models to accurately identify SATD instances. However, class imbalance poses a serious challenge across all the existing datasets, particularly when researchers are interested in categorizing the specific types of SATD. In order to address the scarcity of labeled data for SATD \textit{identification} (i.e., whether an instance is SATD or not) and \textit{categorization} (i.e., which type of SATD is being classified) in existing datasets, we share the \textit{SATDAUG} dataset, an augmented version of existing SATD datasets, including source code comments, issue tracker, pull requests, and commit messages. These augmented datasets have been balanced in relation to the available artifacts and provide a much richer source of labeled data for training machine learning or deep learning models.
Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into the SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This method maintains the flexibility of the text and is user-friendly. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR utilizes the pre-trained language model (e.g., T5 or CLIP) to enhance restoration. We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into SR, yields excellent results on both synthetic and real-world images. Code is available at: //github.com/zhengchen1999/PromptSR.
In recent years, semantic communication is progressively emerging as an effective means of facilitating intelligent and context-aware communication. However, current researches seldom simultaneously consider the reliability and timeliness of semantic communication, where scheduling and resource allocation (SRA) plays a crucial role. In contrast, conventional age-based approaches cannot seamlessly extend to semantic communication due to their oversight of semantic importance. To bridge this gap, we introduce a novel metric: Age of Semantic Importance (AoSI), which adaptly captures both the freshness of information and its semantic importance. Utilizing AoSI, we formulate an average AoSI minimization problem by optimizing multi-source SRA. To address this problem, we proposed a AoSI-aware joint SRA algorithm based on Deep Q-Network (DQN). Simulation results validate the effectiveness of our proposed method, demonstrating its ability to facilitate timely and reliable semantic communication.
Deep neural networks based on linear complex-valued RNNs interleaved with position-wise MLPs are gaining traction as competitive approaches to sequence modeling. Examples of such architectures include state-space models (SSMs) like S4, LRU, and Mamba: recently proposed models that achieve promising performance on text, genetics, and other data that require long-range reasoning. Despite experimental evidence highlighting these architectures' effectiveness and computational efficiency, their expressive power remains relatively unexplored, especially in connection to specific choices crucial in practice - e.g., carefully designed initialization distribution and use of complex numbers. In this paper, we show that combining MLPs with both real or complex linear diagonal recurrences leads to arbitrarily precise approximation of regular causal sequence-to-sequence maps. At the heart of our proof, we rely on a separation of concerns: the linear RNN provides a lossless encoding of the input sequence, and the MLP performs non-linear processing on this encoding. While we show that using real diagonal linear recurrences is enough to achieve universality in this architecture, we prove that employing complex eigenvalues near unit disk - i.e., empirically the most successful strategy in SSMs - greatly helps the RNN in storing information. We connect this finding with the vanishing gradient issue and provide experimental evidence supporting our claims.
Dynamic graph neural networks (DyGNNs) have demonstrated powerful predictive abilities by exploiting graph structural and temporal dynamics. However, the existing DyGNNs fail to handle distribution shifts, which naturally exist in dynamic graphs, mainly because the patterns exploited by DyGNNs may be variant with respect to labels under distribution shifts. In this paper, we propose Disentangled Intervention-based Dynamic graph Attention networks with Invariance Promotion (I-DIDA) to handle spatio-temporal distribution shifts in dynamic graphs by discovering and utilizing invariant patterns, i.e., structures and features whose predictive abilities are stable across distribution shifts. Specifically, we first propose a disentangled spatio-temporal attention network to capture the variant and invariant patterns. By utilizing the disentangled patterns, we design a spatio-temporal intervention mechanism to create multiple interventional distributions and an environment inference module to infer the latent spatio-temporal environments, and minimize the variance of predictions among these intervened distributions and environments, so that our model can make predictions based on invariant patterns with stable predictive abilities under distribution shifts. Extensive experiments demonstrate the superiority of our method over state-of-the-art baselines under distribution shifts. Our work is the first study of spatio-temporal distribution shifts in dynamic graphs, to the best of our knowledge.
Optimal decision-making for trajectory tracking in partially observable, stochastic environments where the number of active localization updates -- the process by which the agent obtains its true state information from the sensors -- are limited, presents a significant challenge. Traditional methods often struggle to balance resource conservation, accurate state estimation and precise tracking, resulting in suboptimal performance. This problem is particularly pronounced in environments with large action spaces, where the need for frequent, accurate state data is paramount, yet the capacity for active localization updates is restricted by external limitations. This paper introduces ComTraQ-MPC, a novel framework that combines Deep Q-Networks (DQN) and Model Predictive Control (MPC) to optimize trajectory tracking with constrained active localization updates. The meta-trained DQN ensures adaptive active localization scheduling, while the MPC leverages available state information to improve tracking. The central contribution of this work is their reciprocal interaction: DQN's update decisions inform MPC's control strategy, and MPC's outcomes refine DQN's learning, creating a cohesive, adaptive system. Empirical evaluations in simulated and real-world settings demonstrate that ComTraQ-MPC significantly enhances operational efficiency and accuracy, providing a generalizable and approximately optimal solution for trajectory tracking in complex partially observable environments.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.