We present a new surrogate modeling technique for efficient approximation of input-output maps governed by parametrized PDEs. The model is hierarchical as it is built on a full order model (FOM), reduced order model (ROM) and machine-learning (ML) model chain. The model is adaptive in the sense that the ROM and ML model are adapted on-the-fly during a sequence of parametric requests to the model. To allow for a certification of the model hierarchy, as well as to control the adaptation process, we employ rigorous a posteriori error estimates for the ROM and ML models. In particular, we provide an example of an ML-based model that allows for rigorous analytical quality statements. We demonstrate the efficiency of the modeling chain on a Monte Carlo and a parameter-optimization example. Here, the ROM is instantiated by Reduced Basis Methods and the ML model is given by a neural network or a VKOGA kernel model.
Federated Learning offers a way to train deep neural networks in a distributed fashion. While this addresses limitations related to distributed data, it incurs a communication overhead as the model parameters or gradients need to be exchanged regularly during training. This can be an issue with large scale distribution of learning asks and negate the benefit of the respective resource distribution. In this paper, we we propose to utilise parallel Adapters for Federated Learning. Using various datasets, we show that Adapters can be applied with different Federated Learning techniques. We highlight that our approach can achieve similar inference performance compared to training the full model while reducing the communication overhead drastically. We further explore the applicability of Adapters in cross-silo and cross-device settings, as well as different non-IID data distributions.
Solving high-dimensional random parametric PDEs poses a challenging computational problem. It is well-known that numerical methods can greatly benefit from adaptive refinement algorithms, in particular when functional approximations in polynomials are computed as in stochastic Galerkin and stochastic collocations methods. This work investigates a residual based adaptive algorithm used to approximate the solution of the stationary diffusion equation with lognormal coefficients. It is known that the refinement procedure is reliable, but the theoretical convergence of the scheme for this class of unbounded coefficients has long been an open question. This paper fills this gap and in particular provides a convergence results for the adaptive solution of the lognormal stationary diffusion problem. A computational example supports the theoretical statement.
We construct estimators for the parameters of a parabolic SPDE with one spatial dimension based on discrete observations of a solution in time and space on a bounded domain. We establish central limit theorems for a high-frequency asymptotic regime. The asymptotic variances are shown to be substantially smaller compared to existing estimation methods. Moreover, asymptotic confidence intervals are directly feasible. Our approach builds upon realized volatilities and their asymptotic illustration as response of a log-linear model with spatial explanatory variable. This yields efficient estimators based on realized volatilities with optimal rates of convergence and minimal variances. We demonstrate efficiency gains compared to previous estimation methods numerically and in Monte Carlo simulations.
Many real-world systems can be described by mathematical formulas that are human-comprehensible, easy to analyze and can be helpful in explaining the system's behaviour. Symbolic regression is a method that generates nonlinear models from data in the form of analytic expressions. Historically, symbolic regression has been predominantly realized using genetic programming, a method that iteratively evolves a population of candidate solutions that are sampled by genetic operators crossover and mutation. This gradient-free evolutionary approach suffers from several deficiencies: it does not scale well with the number of variables and samples in the training data, models tend to grow in size and complexity without an adequate accuracy gain, and it is hard to fine-tune the inner model coefficients using just genetic operators. Recently, neural networks have been applied to learn the whole analytic formula, i.e., its structure as well as the coefficients, by means of gradient-based optimization algorithms. We propose a novel neural network-based symbolic regression method that constructs physically plausible models based on limited training data and prior knowledge about the system. The method employs an adaptive weighting scheme to effectively deal with multiple loss function terms and an epoch-wise learning process to reduce the chance of getting stuck in poor local optima. Furthermore, we propose a parameter-free method for choosing the model with the best interpolation and extrapolation performance out of all models generated through the whole learning process. We experimentally evaluate the approach on the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the anti-lock braking system. The results clearly show the potential of the method to find sparse and accurate models that comply with the prior knowledge provided.
With the growing adoption of deep learning for on-device TinyML applications, there has been an ever-increasing demand for efficient neural network backbones optimized for the edge. Recently, the introduction of attention condenser networks have resulted in low-footprint, highly-efficient, self-attention neural networks that strike a strong balance between accuracy and speed. In this study, we introduce a faster attention condenser design called double-condensing attention condensers that allow for highly condensed feature embeddings. We further employ a machine-driven design exploration strategy that imposes design constraints based on best practices for greater efficiency and robustness to produce the macro-micro architecture constructs of the backbone. The resulting backbone (which we name AttendNeXt) achieves significantly higher inference throughput on an embedded ARM processor when compared to several other state-of-the-art efficient backbones (>10x faster than FB-Net C at higher accuracy and speed and >10x faster than MobileOne-S1 at smaller size) while having a small model size (>1.37x smaller than MobileNetv3-L at higher accuracy and speed) and strong accuracy (1.1% higher top-1 accuracy than MobileViT XS on ImageNet at higher speed). These promising results demonstrate that exploring different efficient architecture designs and self-attention mechanisms can lead to interesting new building blocks for TinyML applications.
This is the second part of our series works on failure-informed adaptive sampling for physic-informed neural networks (FI-PINNs). In our previous work \cite{gao2022failure}, we have presented an adaptive sampling framework by using the failure probability as the posterior error indicator, where the truncated Gaussian model has been adopted for estimating the indicator. In this work, we present two novel extensions to FI-PINNs. The first extension consist in combining with a re-sampling technique, so that the new algorithm can maintain a constant training size. This is achieved through a cosine-annealing, which gradually transforms the sampling of collocation points from uniform to adaptive via training progress. The second extension is to present the subset simulation algorithm as the posterior model (instead of the truncated Gaussian model) for estimating the error indicator, which can more effectively estimate the failure probability and generate new effective training points in the failure region. We investigate the performance of the new approach using several challenging problems, and numerical experiments demonstrate a significant improvement over the original algorithm.
We discover restrained numerical instabilities in current training practices of deep networks with stochastic gradient descent (SGD). We show numerical error (on the order of the smallest floating point bit) induced from floating point arithmetic in training deep nets can be amplified significantly and result in significant test accuracy variance, comparable to the test accuracy variance due to stochasticity in SGD. We show how this is likely traced to instabilities of the optimization dynamics that are restrained, i.e., localized over iterations and regions of the weight tensor space. We do this by presenting a theoretical framework using numerical analysis of partial differential equations (PDE), and analyzing the gradient descent PDE of convolutional neural networks (CNNs). We show that it is stable only under certain conditions on the learning rate and weight decay. We show that rather than blowing up when the conditions are violated, the instability can be restrained. We show this is a consequence of the non-linear PDE associated with the gradient descent of the CNN, whose local linearization changes when over-driving the step size of the discretization, resulting in a stabilizing effect. We link restrained instabilities to the recently discovered Edge of Stability (EoS) phenomena, in which the stable step size predicted by classical theory is exceeded while continuing to optimize the loss and still converging. Because restrained instabilities occur at the EoS, our theory provides new predictions about the EoS, in particular, the role of regularization and the dependence on the network complexity.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.