We develop a statistical toolbox for a quantitative model evaluation of stochastic reaction-diffusion systems modeling space-time evolution of biophysical quantities on the intracellular level. Starting from space-time data $X_N(t,x)$, as, e.g., provided in fluorescence microscopy recordings, we discuss basic modelling principles for conditional mean trend and fluctuations in the class of stochastic reaction-diffusion systems, and subsequently develop statistical inference methods for parameter estimation. With a view towards application to real data, we discuss estimation errors and confidence intervals, in particular in dependence of spatial resolution of measurements, and investigate the impact of misspecified reaction terms and noise coefficients. We also briefly touch implementation issues of the statistical estimators. As a proof of concept we apply our toolbox to the statistical inference on intracellular actin concentration in the social amoeba Dictyostelium discoideum.
Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem.
Object detection is the foundation of various critical computer-vision tasks such as segmentation, object tracking, and event detection. To train an object detector with satisfactory accuracy, a large amount of data is required. However, due to the intensive workforce involved with annotating large datasets, such a data curation task is often outsourced to a third party or relied on volunteers. This work reveals severe vulnerabilities of such data curation pipeline. We propose MACAB that crafts clean-annotated images to stealthily implant the backdoor into the object detectors trained on them even when the data curator can manually audit the images. We observe that the backdoor effect of both misclassification and the cloaking are robustly achieved in the wild when the backdoor is activated with inconspicuously natural physical triggers. Backdooring non-classification object detection with clean-annotation is challenging compared to backdooring existing image classification tasks with clean-label, owing to the complexity of having multiple objects within each frame, including victim and non-victim objects. The efficacy of the MACAB is ensured by constructively i abusing the image-scaling function used by the deep learning framework, ii incorporating the proposed adversarial clean image replica technique, and iii combining poison data selection criteria given constrained attacking budget. Extensive experiments demonstrate that MACAB exhibits more than 90% attack success rate under various real-world scenes. This includes both cloaking and misclassification backdoor effect even restricted with a small attack budget. The poisoned samples cannot be effectively identified by state-of-the-art detection techniques.The comprehensive video demo is at //youtu.be/MA7L_LpXkp4, which is based on a poison rate of 0.14% for YOLOv4 cloaking backdoor and Faster R-CNN misclassification backdoor.
This work develops a novel all-at-once space-time preconditioning approach for resistive magnetohydrodynamics (MHD), with a focus on model problems targeting fusion reactor design. We consider parallel-in-time due to the long time domains required to capture the physics of interest, as well as the complexity of the underlying system and thereby computational cost of long-time integration. To ameliorate this cost by using many processors, we thus develop a novel approach to solving the whole space-time system that is parallelizable in both space and time. We develop a space-time block preconditioning for resistive MHD, following the space-time block preconditioning concept first introduced by Danieli et al. in 2022 for incompressible flow, where an effective preconditioner for classic sequential time-stepping is extended to the space-time setting. The starting point for our derivation is the continuous Schur complement preconditioner by Cyr et al. in 2021, which we proceed to generalise in order to produce, to our knowledge, the first space-time block preconditioning approach for the challenging equations governing incompressible resistive MHD. The numerical results are promising for the model problems of island coalescence and tearing mode, with the overhead computational cost associated with space-time preconditioning versus sequential time-stepping being modest and primarily in the range of 2x-5x, which is low for parallel-in-time schemes in general. Additionally, the scaling results for inner (linear) and outer (nonlinear) iterations are flat in the case of fixed time-step size and only grow very slowly in the case of time-step refinement.
We propose a novel computing runtime that exposes remote compute devices via the cross-vendor open heterogeneous computing standard OpenCL and can execute compute tasks on the MEC cluster side across multiple servers in a scalable manner. Intermittent UE connection loss is handled gracefully even if the device's IP address changes on the way. Network-induced latency is minimized by transferring data and signaling command completions between remote devices in a peer-to-peer fashion directly to the target server with a streamlined TCP-based protocol that yields a command latency of only 60 microseconds on top of network round-trip latency in synthetic benchmarks. The runtime can utilize RDMA to speed up inter-server data transfers by an additional 60% compared to the TCP-based solution. The benefits of the proposed runtime in MEC applications are demonstrated with a smartphone-based augmented reality rendering case study. Measurements show up to 19x improvements to frame rate and 17x improvements to local energy consumption when using the proposed runtime to offload AR rendering from a smartphone. Scalability to multiple GPU servers in real-world applications is shown in a computational fluid dynamics simulation, which scales with the number of servers at roughly 80% efficiency which is comparable to an MPI port of the same simulation.
Momentum space transformations for incommensurate 2D electronic structure calculations are fundamental for reducing computational cost and for representing the data in a more physically motivating format, as exemplified in the Bistritzer-MacDonald model. However, these transformations can be difficult to implement in more complex systems such as when mechanical relaxation patterns are present. In this work, we aim for two objectives. Firstly, we strive to simplify the understanding and implementation of this transformation by rigorously writing the transformations between the four relevant spaces, which we denote real space, configuration space, momentum space, and reciprocal space. This provides a straight-forward algorithm for writing the complex momentum space model from the original real space model. Secondly, we implement this for twisted bilayer graphene with mechanical relaxation affects included. We also analyze the convergence rates of the approximations, and show the tight-binding coupling range increases for smaller relative twists between layers, demonstrating that the 3-nearest neighbor coupling of the Bistritzer-MacDonald model is insufficient when mechanical relaxation is included for very small angles. We quantify this and verify with numerical simulation.
This paper presents a solution to the challenge of mitigating carbon emissions from hosting large-scale machine learning (ML) inference services. ML inference is critical to modern technology products, but it is also a significant contributor to carbon footprint. We introduce Clover, a carbon-friendly ML inference service runtime system that balances performance, accuracy, and carbon emissions through mixed-quality models and GPU resource partitioning. Our experimental results demonstrate that Clover is effective in substantially reducing carbon emissions while maintaining high accuracy and meeting service level agreement (SLA) targets.
With the increased developments in quantum computing, the availability of systematic and automatic testing approaches for quantum programs is becoming increasingly essential. To this end, we present the quantum software testing tool QuCAT for combinatorial testing of quantum programs. QuCAT provides two functionalities of use. With the first functionality, the tool generates a test suite of a given strength (e.g., pair-wise). With the second functionality, it generates test suites with increasing strength until a failure is triggered or a maximum strength is reached. QuCAT uses two test oracles to check the correctness of test outputs. We assess the cost and effectiveness of QuCAT with 3 faulty versions of 5 quantum programs. Results show that combinatorial test suites with a low strength can find faults with limited cost, while a higher strength performs better to trigger some difficult faults with relatively higher cost. Repository: //github.com/Simula-COMPLEX/qucat-tool Video: //youtu.be/UsqgOudKLio
Transformer architectures have facilitated the development of large-scale and general-purpose sequence models for prediction tasks in natural language processing and computer vision, e.g., GPT-3 and Swin Transformer. Although originally designed for prediction problems, it is natural to inquire about their suitability for sequential decision-making and reinforcement learning problems, which are typically beset by long-standing issues involving sample efficiency, credit assignment, and partial observability. In recent years, sequence models, especially the Transformer, have attracted increasing interest in the RL communities, spawning numerous approaches with notable effectiveness and generalizability. This survey presents a comprehensive overview of recent works aimed at solving sequential decision-making tasks with sequence models such as the Transformer, by discussing the connection between sequential decision-making and sequence modeling, and categorizing them based on the way they utilize the Transformer. Moreover, this paper puts forth various potential avenues for future research intending to improve the effectiveness of large sequence models for sequential decision-making, encompassing theoretical foundations, network architectures, algorithms, and efficient training systems. As this article has been accepted by the Frontiers of Computer Science, here is an early version, and the most up-to-date version can be found at //journal.hep.com.cn/fcs/EN/10.1007/s11704-023-2689-5
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.