亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article addresses the robust measurement of covariations in the context of solutions to stochastic evolution equations in Hilbert spaces using functional data analysis. For such equations, standard techniques for functional data based on cross-sectional covariances are often inadequate for identifying statistically relevant random drivers and detecting outliers since they overlook the interplay between cross-sectional and temporal structures. Therefore, we develop an estimation theory for the continuous quadratic covariation of the latent random driver of the equation instead of a static covariance of the observable solution process. We derive identifiability results under weak conditions, establish rates of convergence and a central limit theorem based on infill asymptotics, and provide long-time asymptotics for estimation of a static covariation of the latent driver. Applied to term structure data, our approach uncovers a fundamental alignment with scaling limits of covariations of specific short-term trading strategies, and an empirical study detects several jumps and indicates high-dimensional and time-varying covariations.

相關內容

We propose a nonlinear difference-in-differences method to estimate multivariate counterfactual distributions in classical treatment and control study designs with observational data. Our approach sheds a new light on existing approaches like the changes-in-changes and the classical semiparametric difference-in-differences estimator and generalizes them to settings with multivariate heterogeneity in the outcomes. The main benefit of this extension is that it allows for arbitrary dependence and heterogeneity in the joint outcomes. We demonstrate its utility both on synthetic and real data. In particular, we revisit the classical Card \& Krueger dataset, examining the effect of a minimum wage increase on employment in fast food restaurants; a reanalysis with our method reveals that restaurants tend to substitute full-time with part-time labor after a minimum wage increase at a faster pace. A previous version of this work was entitled "An optimal transport approach to causal inference.

Cooperative co-evolution (CC) algorithms, based on the divide-and-conquer strategy, have emerged as the predominant approach to solving large-scale global optimization (LSGO) problems. The efficiency and accuracy of the grouping stage significantly impact the performance of the optimization process. While the general separability grouping (GSG) method has overcome the limitation of previous differential grouping (DG) methods by enabling the decomposition of non-additively separable functions, it suffers from high computational complexity. To address this challenge, this article proposes a composite separability grouping (CSG) method, seamlessly integrating DG and GSG into a problem decomposition framework to utilize the strengths of both approaches. CSG introduces a step-by-step decomposition framework that accurately decomposes various problem types using fewer computational resources. By sequentially identifying additively, multiplicatively and generally separable variables, CSG progressively groups non-separable variables by recursively considering the interactions between each non-separable variable and the formed non-separable groups. Furthermore, to enhance the efficiency and accuracy of CSG, we introduce two innovative methods: a multiplicatively separable variable detection method and a non-separable variable grouping method. These two methods are designed to effectively detect multiplicatively separable variables and efficiently group non-separable variables, respectively. Extensive experimental results demonstrate that CSG achieves more accurate variable grouping with lower computational complexity compared to GSG and state-of-the-art DG series designs.

This paper presents a case study for the application of semiring semantics for fixed-point formulae to the analysis of strategies in B\"uchi games. Semiring semantics generalizes the classical Boolean semantics by permitting multiple truth values from certain semirings. Evaluating the fixed-point formula that defines the winning region in a given game in an appropriate semiring of polynomials provides not only the Boolean information on who wins, but also tells us how they win and which strategies they might use. This is well-understood for reachability games, where the winning region is definable as a least fixed point. The case of B\"uchi games is of special interest, not only due to their practical importance, but also because it is the simplest case where the fixed-point definition involves a genuine alternation of a greatest and a least fixed point. We show that, in a precise sense, semiring semantics provide information about all absorption-dominant strategies -- strategies that win with minimal effort, and we discuss how these relate to positional and the more general persistent strategies. This information enables applications such as game synthesis or determining minimal modifications to the game needed to change its outcome. Lastly, we discuss limitations of our approach and present questions that cannot be immediately answered by semiring semantics.

An asymptotic theory is established for linear functionals of the predictive function given by kernel ridge regression, when the reproducing kernel Hilbert space is equivalent to a Sobolev space. The theory covers a wide variety of linear functionals, including point evaluations, evaluation of derivatives, $L_2$ inner products, etc. We establish the upper and lower bounds of the estimates and their asymptotic normality. It is shown that $\lambda\sim n^{-1}$ is the universal optimal order of magnitude for the smoothing parameter to balance the variance and the worst-case bias. The theory also implies that the optimal $L_\infty$ error of kernel ridge regression can be attained under the optimal smoothing parameter $\lambda\sim n^{-1}\log n$. These optimal rates for the smoothing parameter differ from the known optimal rate $\lambda\sim n^{-\frac{2m}{2m+d}}$ that minimizes the $L_2$ error of the kernel ridge regression.

This study addresses the challenges in parameter estimation of stochastic differential equations driven by non-Gaussian noises, which are critical in understanding dynamic phenomena such as price fluctuations and the spread of infectious diseases. Previous research highlighted the potential of LSTM networks in estimating parameters of alpha stable Levy driven SDEs but faced limitations including high time complexity and constraints of the LSTM chaining property. To mitigate these issues, we introduce the PEnet, a novel CNN-LSTM-based three-stage model that offers an end to end approach with superior accuracy and adaptability to varying data structures, enhanced inference speed for long sequence observations through initial data feature condensation by CNN, and high generalization capability, allowing its application to various complex SDE scenarios. Experiments on synthetic datasets confirm PEnet significant advantage in estimating SDE parameters associated with noise characteristics, establishing it as a competitive method for SDE parameter estimation in the presence of Levy noise.

In this article we introduce an algorithm for mitigating the adverse effects of noise on gradient descent in variational quantum algorithms. This is accomplished by computing a {\emph{regularized}} local classical approximation to the objective function at every gradient descent step. The computational overhead of our algorithm is entirely classical, i.e., the number of circuit evaluations is exactly the same as when carrying out gradient descent using the parameter-shift rules. We empirically demonstrate the advantages offered by our algorithm on randomized parametrized quantum circuits.

Social recommendation systems face the problem of social influence bias, which can lead to an overemphasis on recommending items that friends have interacted with. Addressing this problem is crucial, and existing methods often rely on techniques such as weight adjustment or leveraging unbiased data to eliminate this bias. However, we argue that not all biases are detrimental, i.e., some items recommended by friends may align with the user's interests. Blindly eliminating such biases could undermine these positive effects, potentially diminishing recommendation accuracy. In this paper, we propose a Causal Disentanglement-based framework for Regulating Social influence Bias in social recommendation, named CDRSB, to improve recommendation performance. From the perspective of causal inference, we find that the user social network could be regarded as a confounder between the user and item embeddings (treatment) and ratings (outcome). Due to the presence of this social network confounder, two paths exist from user and item embeddings to ratings: a non-causal social influence path and a causal interest path. Building upon this insight, we propose a disentangled encoder that focuses on disentangling user and item embeddings into interest and social influence embeddings. Mutual information-based objectives are designed to enhance the distinctiveness of these disentangled embeddings, eliminating redundant information. Additionally, a regulatory decoder that employs a weight calculation module to dynamically learn the weights of social influence embeddings for effectively regulating social influence bias has been designed. Experimental results on four large-scale real-world datasets Ciao, Epinions, Dianping, and Douban book demonstrate the effectiveness of CDRSB compared to state-of-the-art baselines.

This study investigates the generation of synthetic disinformation by OpenAI's Large Language Models (LLMs) through prompt engineering and explores their responsiveness to emotional prompting. Leveraging various LLM iterations using davinci-002, davinci-003, gpt-3.5-turbo and gpt-4, we designed experiments to assess their success in producing disinformation. Our findings, based on a corpus of 19,800 synthetic disinformation social media posts, reveal that all LLMs by OpenAI can successfully produce disinformation, and that they effectively respond to emotional prompting, indicating their nuanced understanding of emotional cues in text generation. When prompted politely, all examined LLMs consistently generate disinformation at a high frequency. Conversely, when prompted impolitely, the frequency of disinformation production diminishes, as the models often refuse to generate disinformation and instead caution users that the tool is not intended for such purposes. This research contributes to the ongoing discourse surrounding responsible development and application of AI technologies, particularly in mitigating the spread of disinformation and promoting transparency in AI-generated content.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

北京阿比特科技有限公司