Large-scale datasets for single-label multi-class classification, such as \emph{ImageNet-1k}, have been instrumental in advancing deep learning and computer vision. However, a critical and often understudied aspect is the comprehensive quality assessment of these datasets, especially regarding potential multi-label annotation errors. In this paper, we introduce a lightweight, user-friendly, and scalable framework that synergizes human and machine intelligence for efficient dataset validation and quality enhancement. We term this novel framework \emph{Multilabelfy}. Central to Multilabelfy is an adaptable web-based platform that systematically guides annotators through the re-evaluation process, effectively leveraging human-machine interactions to enhance dataset quality. By using Multilabelfy on the ImageNetV2 dataset, we found that approximately $47.88\%$ of the images contained at least two labels, underscoring the need for more rigorous assessments of such influential datasets. Furthermore, our analysis showed a negative correlation between the number of potential labels per image and model top-1 accuracy, illuminating a crucial factor in model evaluation and selection. Our open-source framework, Multilabelfy, offers a convenient, lightweight solution for dataset enhancement, emphasizing multi-label proportions. This study tackles major challenges in dataset integrity and provides key insights into model performance evaluation. Moreover, it underscores the advantages of integrating human expertise with machine capabilities to produce more robust models and trustworthy data development. The source code for Multilabelfy will be available at //github.com/esla/Multilabelfy. \keywords{Computer Vision \and Dataset Quality Enhancement \and Dataset Validation \and Human-Computer Interaction \and Multi-label Annotation.}
Large-scale datasets are important for the development of deep learning models. Such datasets usually require a heavy workload of annotations, which are extremely time-consuming and expensive. To accelerate the annotation procedure, multiple annotators may be employed to label different subsets of the data. However, the inconsistency and bias among different annotators are harmful to the model training, especially for qualitative and subjective tasks.To address this challenge, in this paper, we propose a novel contrastive regression framework to address the disjoint annotations problem, where each sample is labeled by only one annotator and multiple annotators work on disjoint subsets of the data. To take account of both the intra-annotator consistency and inter-annotator inconsistency, two strategies are employed.Firstly, a contrastive-based loss is applied to learn the relative ranking among different samples of the same annotator, with the assumption that the ranking of samples from the same annotator is unanimous. Secondly, we apply the gradient reversal layer to learn robust representations that are invariant to different annotators. Experiments on the facial expression prediction task, as well as the image quality assessment task, verify the effectiveness of our proposed framework.
Symbols (or more broadly, non-natural language textual representations) such as numerical sequences, molecular formulas, and table delimiters widely exist, playing important roles in various tasks such as abstract reasoning, chemical property prediction, and table question answering. Despite the impressive natural language comprehension capabilities of large language models (LLMs), their reasoning abilities for symbols remain inadequate, which could attributed to the difference between symbol representations and general natural languages. We propose symbol-to-language (S2L), a tuning-free method that enables large language models to solve symbol-related problems with information expressed in natural language. Specifically, S2L first converts the symbols involved to language-based representations, which can be implemented by prompting LLMs or leveraging external tools, then these language-based representations are integrated into the original problem via direct substitution or concatenation, serving as useful input information for LLMs. We evaluate the S2L method using both API-based (GPT-4, ChatGPT) and open-source (OpenChat) models over eight symbol-related tasks, ranging from symbol-only abstract reasoning to sentiment analysis in social media. Experimental results show that S2L consistently leads to superior performance. For example, by employing S2L for GPT-4, there can be average significant improvements of +21.9% and +9.5% for subtasks in 1D-ARC and Dyck language, respectively. Codes and data are available at //github.com/THUNLP-MT/symbol2language.
Background: Missing data is a common challenge in mass spectrometry-based metabolomics, which can lead to biased and incomplete analyses. The integration of whole-genome sequencing (WGS) data with metabolomics data has emerged as a promising approach to enhance the accuracy of data imputation in metabolomics studies. Method: In this study, we propose a novel method that leverages the information from WGS data and reference metabolites to impute unknown metabolites. Our approach utilizes a multi-view variational autoencoder to jointly model the burden score, polygenetic risk score (PGS), and linkage disequilibrium (LD) pruned single nucleotide polymorphisms (SNPs) for feature extraction and missing metabolomics data imputation. By learning the latent representations of both omics data, our method can effectively impute missing metabolomics values based on genomic information. Results: We evaluate the performance of our method on empirical metabolomics datasets with missing values and demonstrate its superiority compared to conventional imputation techniques. Using 35 template metabolites derived burden scores, PGS and LD-pruned SNPs, the proposed methods achieved R^2-scores > 0.01 for 71.55% of metabolites. Conclusion: The integration of WGS data in metabolomics imputation not only improves data completeness but also enhances downstream analyses, paving the way for more comprehensive and accurate investigations of metabolic pathways and disease associations. Our findings offer valuable insights into the potential benefits of utilizing WGS data for metabolomics data imputation and underscore the importance of leveraging multi-modal data integration in precision medicine research.
Feature-distributed data, referred to data partitioned by features and stored across multiple computing nodes, are increasingly common in applications with a large number of features. This paper proposes a two-stage relaxed greedy algorithm (TSRGA) for applying multivariate linear regression to such data. The main advantage of TSRGA is that its communication complexity does not depend on the feature dimension, making it highly scalable to very large data sets. In addition, for multivariate response variables, TSRGA can be used to yield low-rank coefficient estimates. The fast convergence of TSRGA is validated by simulation experiments. Finally, we apply the proposed TSRGA in a financial application that leverages unstructured data from the 10-K reports, demonstrating its usefulness in applications with many dense large-dimensional matrices.
Current natural language understanding (NLU) models have been continuously scaling up, both in terms of model size and input context, introducing more hidden and input neurons. While this generally improves performance on average, the extra neurons do not yield a consistent improvement for all instances. This is because some hidden neurons are redundant, and the noise mixed in input neurons tends to distract the model. Previous work mainly focuses on extrinsically reducing low-utility neurons by additional post- or pre-processing, such as network pruning and context selection, to avoid this problem. Beyond that, can we make the model reduce redundant parameters and suppress input noise by intrinsically enhancing the utility of each neuron? If a model can efficiently utilize neurons, no matter which neurons are ablated (disabled), the ablated submodel should perform no better than the original full model. Based on such a comparison principle between models, we propose a cross-model comparative loss for a broad range of tasks. Comparative loss is essentially a ranking loss on top of the task-specific losses of the full and ablated models, with the expectation that the task-specific loss of the full model is minimal. We demonstrate the universal effectiveness of comparative loss through extensive experiments on 14 datasets from 3 distinct NLU tasks based on 5 widely used pretrained language models and find it particularly superior for models with few parameters or long input.
Cooperative co-evolution (CC) algorithms, based on the divide-and-conquer strategy, have emerged as the predominant approach to solving large-scale global optimization (LSGO) problems. The efficiency and accuracy of the grouping stage significantly impact the performance of the optimization process. While the general separability grouping (GSG) method has overcome the limitation of previous differential grouping (DG) methods by enabling the decomposition of non-additively separable functions, it suffers from high computational complexity. To address this challenge, this article proposes a composite separability grouping (CSG) method, seamlessly integrating DG and GSG into a problem decomposition framework to utilize the strengths of both approaches. CSG introduces a step-by-step decomposition framework that accurately decomposes various problem types using fewer computational resources. By sequentially identifying additively, multiplicatively and generally separable variables, CSG progressively groups non-separable variables by recursively considering the interactions between each non-separable variable and the formed non-separable groups. Furthermore, to enhance the efficiency and accuracy of CSG, we introduce two innovative methods: a multiplicatively separable variable detection method and a non-separable variable grouping method. These two methods are designed to effectively detect multiplicatively separable variables and efficiently group non-separable variables, respectively. Extensive experimental results demonstrate that CSG achieves more accurate variable grouping with lower computational complexity compared to GSG and state-of-the-art DG series designs.
Zero-suppressed binary decision diagram (ZDD) is a data structure to represent a family of (sub)sets compactly, and it can be used as a succinct index for a family of sets. To build ZDD representing a desired family of sets, there are many transformation operations that take ZDDs as inputs and output ZDD representing the resultant family after performing operations such as set union and intersection. However, except for some basic operations, the worst-time complexity of taking such transformation on ZDDs has not been extensively studied, and some contradictory statements about it have arisen in the literature. In this paper, we show that many transformation operations on ZDDs cannot be performed in worst-case polynomial time with respect to the size of input ZDDs. This refutes some of the folklore circulated in past literature and resolves an open problem raised by Knuth. Our results are stronger in that such blow-up of computational time occurs even when the ordering, which has a significant impact on the efficiency of treating ZDDs, is reasonable.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.