Biomedical event extraction is an information extraction task to obtain events from biomedical text, whose targets include the type, the trigger, and the respective arguments involved in an event. Traditional biomedical event extraction usually adopts a pipelined approach, which contains trigger identification, argument role recognition, and finally event construction either using specific rules or by machine learning. In this paper, we propose an n-ary relation extraction method based on the BERT pre-training model to construct Binding events, in order to capture the semantic information about an event's context and its participants. The experimental results show that our method achieves promising results on the GE11 and GE13 corpora of the BioNLP shared task with F1 scores of 63.14% and 59.40%, respectively. It demonstrates that by significantly improving theperformance of Binding events, the overall performance of the pipelined event extraction approach or even exceeds those of current joint learning methods.
Large language model pre-training has become increasingly expensive, with most practitioners relying on scaling laws to allocate compute budgets for model size and training tokens, commonly referred to as Compute-Optimal or Chinchilla Optimal. In this paper, we hypothesize a new scaling law that suggests model performance depends mostly on the amount of compute spent for transformer-based models, independent of the specific allocation to model size and dataset size. Using this unified scaling law, we predict that (a) for inference efficiency, training should prioritize smaller model sizes and larger training datasets, and (b) assuming the exhaustion of available web datasets, scaling the model size might be the only way to further improve model performance.
In patent prosecution, image-based retrieval systems for identifying similarities between current patent images and prior art are pivotal to ensure the novelty and non-obviousness of patent applications. Despite their growing popularity in recent years, existing attempts, while effective at recognizing images within the same patent, fail to deliver practical value due to their limited generalizability in retrieving relevant prior art. Moreover, this task inherently involves the challenges posed by the abstract visual features of patent images, the skewed distribution of image classifications, and the semantic information of image descriptions. Therefore, we propose a language-informed, distribution-aware multimodal approach to patent image feature learning, which enriches the semantic understanding of patent image by integrating Large Language Models and improves the performance of underrepresented classes with our proposed distribution-aware contrastive losses. Extensive experiments on DeepPatent2 dataset show that our proposed method achieves state-of-the-art or comparable performance in image-based patent retrieval with mAP +53.3%, Recall@10 +41.8%, and MRR@10 +51.9%. Furthermore, through an in-depth user analysis, we explore our model in aiding patent professionals in their image retrieval efforts, highlighting the model's real-world applicability and effectiveness.
In statistical mechanics, computing the partition function is generally difficult. An approximation method using a variational autoregressive network (VAN) has been proposed recently. This approach offers the advantage of directly calculating the generation probabilities while obtaining a significantly large number of samples. The present study introduces a novel approximation method that employs samples derived from quantum annealing machines in conjunction with VAN, which are empirically assumed to adhere to the Gibbs-Boltzmann distribution. When applied to the finite-size Sherrington-Kirkpatrick model, the proposed method demonstrates enhanced accuracy compared to the traditional VAN approach and other approximate methods, such as the widely utilized naive mean field.
Measuring similarity between RDF graphs is essential for various applications, including knowledge discovery, semantic web analysis, and recommender systems. However, traditional similarity measures often treat all properties equally, potentially overlooking the varying importance of different properties in different contexts. Consequently, exploring weighted property approaches for RDF graph similarity measure presents an intriguing avenue for investigation. Therefore, in this paper, we propose a weighted property approach for RDF graph similarity measure to address this limitation. Our approach incorporates the relative importance of properties into the similarity calculation, enabling a more nuanced and context-aware measures of similarity. We evaluate our approach through a comprehensive experimental study on an RDF graph dataset in the vehicle domain. Our results demonstrate that the proposed approach achieves promising accuracy and effectively reflects the perceived similarity between RDF graphs.
Retraining machine learning models (ML) when new batches of data become available is an important task in real-world pipelines. Existing methods focus largely on greedy approaches to find the best-performing model for each batch, without considering the stability of the model's structure across retraining iterations. In this study, we propose a methodology for finding sequences of ML models that are stable across retraining iterations. We develop a mixed-integer optimization algorithm that is guaranteed to recover Pareto optimal models (in terms of the predictive power-stability trade-off) and an efficient polynomial-time algorithm that performs well in practice. Our method focuses on retaining consistent analytical insights -- which is important to model interpretability, ease of implementation, and fostering trust with users -- by using custom-defined distance metrics that can be directly incorporated into the optimization problem. Importantly, our method shows stronger stability than greedily trained models with a small, controllable sacrifice in model performance in a real-world case study. Using SHAP feature importance, we show that analytical insights are consistent across retraining iterations.
Guessing random additive noise decoding (GRAND) is a recently proposed decoding paradigm particularly suitable for codes with short length and high rate. Among its variants, ordered reliability bits GRAND (ORBGRAND) exploits soft information in a simple and effective fashion to schedule its queries, thereby allowing efficient hardware implementation. Compared with maximum likelihood (ML) decoding, however, ORBGRAND still exhibits noticeable performance loss in terms of block error rate (BLER). In order to improve the performance of ORBGRAND while still retaining its amenability to hardware implementation, a new variant of ORBGRAND termed RS-ORBGRAND is proposed, whose basic idea is to reshuffle the queries of ORBGRAND so that the expected number of queries is minimized. Numerical simulations show that RS-ORBGRAND leads to noticeable gains compared with ORBGRAND and its existing variants, and is only 0.1dB away from ML decoding, for BLER as low as $10^{-6}$.
Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.