亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent aerial object detection models rely on a large amount of labeled training data, which requires unaffordable manual labeling costs in large aerial scenes with dense objects. Active learning effectively reduces the data labeling cost by selectively querying the informative and representative unlabelled samples. However, existing active learning methods are mainly with class-balanced settings and image-based querying for generic object detection tasks, which are less applicable to aerial object detection scenarios due to the long-tailed class distribution and dense small objects in aerial scenes. In this paper, we propose a novel active learning method for cost-effective aerial object detection. Specifically, both object-level and image-level informativeness are considered in the object selection to refrain from redundant and myopic querying. Besides, an easy-to-use class-balancing criterion is incorporated to favor the minority objects to alleviate the long-tailed class distribution problem in model training. We further devise a training loss to mine the latent knowledge in the unlabeled image regions. Extensive experiments are conducted on the DOTA-v1.0 and DOTA-v2.0 benchmarks to validate the effectiveness of the proposed method. For the ReDet, KLD, and SASM detectors on the DOTA-v2.0 dataset, the results show that our proposed MUS-CDB method can save nearly 75\% of the labeling cost while achieving comparable performance to other active learning methods in terms of mAP.Code is publicly online (//github.com/ZJW700/MUS-CDB).

相關內容

主動學習是機器學習(更普遍的說是人工智能)的一個子領域,在統計學領域也叫查詢學習、最優實驗設計。“學習模塊”和“選擇策略”是主動學習算法的2個基本且重要的模塊。 主動學習是“一種學習方法,在這種方法中,學生會主動或體驗性地參與學習過程,并且根據學生的參與程度,有不同程度的主動學習。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“學生除了被動地聽課以外,還從事其他活動。” 在高等教育研究協會(ASHE)的一份報告中,作者討論了各種促進主動學習的方法。他們引用了一些文獻,這些文獻表明學生不僅要做聽,還必須做更多的事情才能學習。他們必須閱讀,寫作,討論并參與解決問題。此過程涉及三個學習領域,即知識,技能和態度(KSA)。這種學習行為分類法可以被認為是“學習過程的目標”。特別是,學生必須從事諸如分析,綜合和評估之類的高級思維任務。

Large language models such as GPT-3 have demonstrated an impressive capability to adapt to new tasks without requiring task-specific training data. This capability has been particularly effective in settings such as narrative question answering, where the diversity of tasks is immense, but the available supervision data is small. In this work, we investigate if such language models can extend their zero-shot reasoning abilities to long multimodal narratives in multimedia content such as drama, movies, and animation, where the story plays an essential role. We propose Long Story Short, a framework for narrative video QA that first summarizes the narrative of the video to a short plot and then searches parts of the video relevant to the question. We also propose to enhance visual matching with CLIPCheck. Our model outperforms state-of-the-art supervised models by a large margin, highlighting the potential of zero-shot QA for long videos.

Thermal spray coating is a critical process in many industries, involving the application of coatings to surfaces to enhance their functionality. This paper proposes a framework for modelling and predicting critical target variables in thermal spray coating processes, based on the application of statistical design of experiments (DoE) and the modelling of the data using generalized linear models (GLMs) and gamma regression. Experimental data obtained from thermal spray coating trials are used to validate the presented approach, demonstrating that it is able to accurately model and predict critical target variables and their intricate relationships. As such, the framework has significant potential for the optimization of thermal spray coating processes, and can contribute to the development of more efficient and effective coating technologies in various industries.

Out-of-distribution (OOD) detection is essential to improve the reliability of machine learning models by detecting samples that do not belong to the training distribution. Detecting OOD samples effectively in certain tasks can pose a challenge because of the substantial heterogeneity within the in-distribution (ID), and the high structural similarity between ID and OOD classes. For instance, when detecting heart views in fetal ultrasound videos there is a high structural similarity between the heart and other anatomies such as the abdomen, and large in-distribution variance as a heart has 5 distinct views and structural variations within each view. To detect OOD samples in this context, the resulting model should generalise to the intra-anatomy variations while rejecting similar OOD samples. In this paper, we introduce dual-conditioned diffusion models (DCDM) where we condition the model on in-distribution class information and latent features of the input image for reconstruction-based OOD detection. This constrains the generative manifold of the model to generate images structurally and semantically similar to those within the in-distribution. The proposed model outperforms reference methods with a 12% improvement in accuracy, 22% higher precision, and an 8% better F1 score.

Feature extraction and matching are the basic parts of many robotic vision tasks, such as 2D or 3D object detection, recognition, and registration. As known, 2D feature extraction and matching have already been achieved great success. Unfortunately, in the field of 3D, the current methods fail to support the extensive application of 3D LiDAR sensors in robotic vision tasks, due to the poor descriptiveness and inefficiency. To address this limitation, we propose a novel 3D feature representation method: Linear Keypoints representation for 3D LiDAR point cloud, called LinK3D. The novelty of LinK3D lies in that it fully considers the characteristics (such as the sparsity, and complexity of scenes) of LiDAR point clouds, and represents the keypoint with its robust neighbor keypoints, which provide strong distinction in the description of the keypoint. The proposed LinK3D has been evaluated on two public datasets (i.e., KITTI, Steven VLP16), and the experimental results show that our method greatly outperforms the state-of-the-art in matching performance. More importantly, LinK3D shows excellent real-time performance, faster than the sensor frame rate at 10 Hz of a typical rotating LiDAR sensor. LinK3D only takes an average of 32 milliseconds to extract features from the point cloud collected by a 64-beam LiDAR, and takes merely about 8 milliseconds to match two LiDAR scans when executed in a notebook with an Intel Core i7 @2.2 GHz processor. Moreover, our method can be widely extended to various 3D vision applications. In this paper, we apply the proposed LinK3D to the LiDAR odometry and place recognition task of LiDAR SLAM. The experimental results show that our method can improve the efficiency and accuracy of LiDAR SLAM system.

Widely-used LiDAR-based 3D object detectors often neglect fundamental geometric information readily available from the object proposals in their confidence estimation. This is mostly due to architectural design choices, which were often adopted from the 2D image domain, where geometric context is rarely available. In 3D, however, considering the object properties and its surroundings in a holistic way is important to distinguish between true and false positive detections, e.g. occluded pedestrians in a group. To address this, we present GACE, an intuitive and highly efficient method to improve the confidence estimation of a given black-box 3D object detector. We aggregate geometric cues of detections and their spatial relationships, which enables us to properly assess their plausibility and consequently, improve the confidence estimation. This leads to consistent performance gains over a variety of state-of-the-art detectors. Across all evaluated detectors, GACE proves to be especially beneficial for the vulnerable road user classes, i.e. pedestrians and cyclists.

Precise relative navigation is a critical enabler for distributed satellites to achieve new mission objectives impossible for a monolithic spacecraft. Carrier phase differential GPS (CDGPS) with integer ambiguity resolution (IAR) is a promising means of achieving cm-level accuracy for high-precision Rendezvous, Proximity-Operations and Docking (RPOD), In-Space Servicing, Assembly and Manufacturing (ISAM) as well as satellite formation flying and swarming. However, IAR is sensitive to received GPS signal noise, especially under severe multi-path or high thermal noise. This paper proposes a sensor-fusion approach to achieve IAR under such conditions in two coupling stages. A loose coupling stage fuses through an Extended Kalman Filter the CDGPS measurements with on-board sensor measurements such as range from cross-links, and vision-based bearing angles. A second tight-coupling stage augments the cost function of the integer weighted least-squares minimization with a soft constraint function using noise-weighted observed-minus-computed residuals from these external sensor measurements. Integer acceptance tests are empirically modified to reflect added constraints. Partial IAR is applied to graduate integer fixing. These proposed techniques are packaged into flight-capable software, with ground truths simulated by the Stanford Space Rendezvous Laboratory's S3 library using state-of-the-art force modelling with relevant sources of errors, and validated in two scenarios: (1) a high multi-path scenario involving rendezvous and docking in low Earth orbit, and (2) a high thermal noise scenario relying only on GPS side-lobe signals during proximity operations in geostationary orbit. This study demonstrates successful IAR in both cases, using the proposed sensor-fusion approach, thus demonstrating potential for high-precision state estimation under adverse signal-to-noise conditions.

Diffusion models may be viewed as hierarchical variational autoencoders (VAEs) with two improvements: parameter sharing for the conditional distributions in the generative process and efficient computation of the loss as independent terms over the hierarchy. We consider two changes to the diffusion model that retain these advantages while adding flexibility to the model. Firstly, we introduce a data- and depth-dependent mean function in the diffusion process, which leads to a modified diffusion loss. Our proposed framework, DiffEnc, achieves state-of-the-art likelihood on CIFAR-10. Secondly, we let the ratio of the noise variance of the reverse encoder process and the generative process be a free weight parameter rather than being fixed to 1. This leads to theoretical insights: For a finite depth hierarchy, the evidence lower bound (ELBO) can be used as an objective for a weighted diffusion loss approach and for optimizing the noise schedule specifically for inference. For the infinite-depth hierarchy, on the other hand, the weight parameter has to be 1 to have a well-defined ELBO.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.

北京阿比特科技有限公司