Phase-type (PH) distributions are a popular tool for the analysis of univariate risks in numerous actuarial applications. Their multivariate counterparts (MPH$^\ast$), however, have not seen such a proliferation, due to lack of explicit formulas and complicated estimation procedures. A simple construction of multivariate phase-type distributions -- mPH -- is proposed for the parametric description of multivariate risks, leading to models of considerable probabilistic flexibility and statistical tractability. The main idea is to start different Markov processes at the same state, and allow them to evolve independently thereafter, leading to dependent absorption times. By dimension augmentation arguments, this construction can be cast into the umbrella of MPH$^\ast$ class, but enjoys explicit formulas which the general specification lacks, including common measures of dependence. Moreover, it is shown that the class is still rich enough to be dense on the set of multivariate risks supported on the positive orthant, and it is the smallest known sub-class to have this property. In particular, the latter result provides a new short proof of the denseness of the MPH$^\ast$ class. In practice this means that the mPH class allows for modeling of bivariate risks with any given correlation or copula. We derive an EM algorithm for its statistical estimation, and illustrate it on bivariate insurance data. Extensions to more general settings are outlined.
Pragmatic trials evaluating health care interventions often adopt cluster randomization due to scientific or logistical considerations. Previous reviews have shown that co-primary endpoints are common in pragmatic trials but infrequently recognized in sample size or power calculations. While methods for power analysis based on $K$ ($K\geq 2$) binary co-primary endpoints are available for CRTs, to our knowledge, methods for continuous co-primary endpoints are not yet available. Assuming a multivariate linear mixed model that accounts for multiple types of intraclass correlation coefficients (endpoint-specific ICCs, intra-subject ICCs and inter-subject between-endpoint ICCs) among the observations in each cluster, we derive the closed-form joint distribution of $K$ treatment effect estimators to facilitate sample size and power determination with different types of null hypotheses under equal cluster sizes. We characterize the relationship between the power of each test and different types of correlation parameters. We further relax the equal cluster size assumption and approximate the joint distribution of the $K$ treatment effect estimators through the mean and coefficient of variation of cluster sizes. Our simulation studies with a finite number of clusters indicate that the predicted power by our method agrees well with the empirical power, when the parameters in the multivariate linear mixed model are estimated via the expectation-maximization algorithm. An application to a real CRT is presented to illustrate the proposed method.
Consensus is a common method for computing a function of the data distributed among the nodes of a network. Of particular interest is distributed average consensus, whereby the nodes iteratively compute the sample average of the data stored at all the nodes of the network using only near-neighbor communications. In real-world scenarios, these communications must undergo quantization, which introduces distortion to the internode messages. In this thesis, a model for the evolution of the network state statistics at each iteration is developed under the assumptions of Gaussian data and additive quantization error. It is shown that minimization of the communication load in terms of aggregate source coding rate can be posed as a generalized geometric program, for which an equivalent convex optimization can efficiently solve for the global minimum. Optimization procedures are developed for rate-distortion-optimal vector quantization, uniform entropy-coded scalar quantization, and fixed-rate uniform quantization. Numerical results demonstrate the performance of these approaches. For small numbers of iterations, the fixed-rate optimizations are verified using exhaustive search. Comparison to the prior art suggests competitive performance under certain circumstances but strongly motivates the incorporation of more sophisticated coding strategies, such as differential, predictive, or Wyner-Ziv coding.
While post-training quantization receives popularity mostly due to its evasion in accessing the original complete training dataset, its poor performance also stems from this limitation. To alleviate this limitation, in this paper, we leverage the synthetic data introduced by zero-shot quantization with calibration dataset and we propose a fine-grained data distribution alignment (FDDA) method to boost the performance of post-training quantization. The method is based on two important properties of batch normalization statistics (BNS) we observed in deep layers of the trained network, i.e., inter-class separation and intra-class incohesion. To preserve this fine-grained distribution information: 1) We calculate the per-class BNS of the calibration dataset as the BNS centers of each class and propose a BNS-centralized loss to force the synthetic data distributions of different classes to be close to their own centers. 2) We add Gaussian noise into the centers to imitate the incohesion and propose a BNS-distorted loss to force the synthetic data distribution of the same class to be close to the distorted centers. By introducing these two fine-grained losses, our method shows the state-of-the-art performance on ImageNet, especially when the first and last layers are quantized to low-bit as well. Our project is available at //github.com/zysxmu/FDDA.
Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.
Fine-tuned pre-trained language models (PLMs) have achieved awesome performance on almost all NLP tasks. By using additional prompts to fine-tune PLMs, we can further stimulate the rich knowledge distributed in PLMs to better serve downstream task. Prompt tuning has achieved promising results on some few-class classification tasks such as sentiment classification and natural language inference. However, manually designing lots of language prompts is cumbersome and fallible. For those auto-generated prompts, it is also expensive and time-consuming to verify their effectiveness in non-few-shot scenarios. Hence, it is challenging for prompt tuning to address many-class classification tasks. To this end, we propose prompt tuning with rules (PTR) for many-class text classification, and apply logic rules to construct prompts with several sub-prompts. In this way, PTR is able to encode prior knowledge of each class into prompt tuning. We conduct experiments on relation classification, a typical many-class classification task, and the results on benchmarks show that PTR can significantly and consistently outperform existing state-of-the-art baselines. This indicates that PTR is a promising approach to take advantage of PLMs for those complicated classification tasks.
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.
Leveraging biased click data for optimizing learning to rank systems has been a popular approach in information retrieval. Because click data is often noisy and biased, a variety of methods have been proposed to construct unbiased learning to rank (ULTR) algorithms for the learning of unbiased ranking models. Among them, automatic unbiased learning to rank (AutoULTR) algorithms that jointly learn user bias models (i.e., propensity models) with unbiased rankers have received a lot of attention due to their superior performance and low deployment cost in practice. Despite their differences in theories and algorithm design, existing studies on ULTR usually use uni-variate ranking functions to score each document or result independently. On the other hand, recent advances in context-aware learning-to-rank models have shown that multivariate scoring functions, which read multiple documents together and predict their ranking scores jointly, are more powerful than uni-variate ranking functions in ranking tasks with human-annotated relevance labels. Whether such superior performance would hold in ULTR with noisy data, however, is mostly unknown. In this paper, we investigate existing multivariate scoring functions and AutoULTR algorithms in theory and prove that permutation invariance is a crucial factor that determines whether a context-aware learning-to-rank model could be applied to existing AutoULTR framework. Our experiments with synthetic clicks on two large-scale benchmark datasets show that AutoULTR models with permutation-invariant multivariate scoring functions significantly outperform those with uni-variate scoring functions and permutation-variant multivariate scoring functions.
Long Short-Term Memory (LSTM) infers the long term dependency through a cell state maintained by the input and the forget gate structures, which models a gate output as a value in [0,1] through a sigmoid function. However, due to the graduality of the sigmoid function, the sigmoid gate is not flexible in representing multi-modality or skewness. Besides, the previous models lack modeling on the correlation between the gates, which would be a new method to adopt inductive bias for a relationship between previous and current input. This paper proposes a new gate structure with the bivariate Beta distribution. The proposed gate structure enables probabilistic modeling on the gates within the LSTM cell so that the modelers can customize the cell state flow with priors and distributions. Moreover, we theoretically show the higher upper bound of the gradient compared to the sigmoid function, and we empirically observed that the bivariate Beta distribution gate structure provides higher gradient values in training. We demonstrate the effectiveness of bivariate Beta gate structure on the sentence classification, image classification, polyphonic music modeling, and image caption generation.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.