亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In real dialogue scenarios, as there are unknown input noises in the utterances, existing supervised slot filling models often perform poorly in practical applications. Even though there are some studies on noise-robust models, these works are only evaluated on rule-based synthetic datasets, which is limiting, making it difficult to promote the research of noise-robust methods. In this paper, we introduce a noise robustness evaluation dataset named Noise-SF for slot filling task. The proposed dataset contains five types of human-annotated noise, and all those noises are exactly existed in real extensive robust-training methods of slot filling into the proposed framework. By conducting exhaustive empirical evaluation experiments on Noise-SF, we find that baseline models have poor performance in robustness evaluation, and the proposed framework can effectively improve the robustness of models. Based on the empirical experimental results, we make some forward-looking suggestions to fuel the research in this direction. Our dataset Noise-SF will be released at //github.com/dongguanting/Noise-SF.

相關內容

With the rapid advancement of machine learning models for NLP tasks, collecting high-fidelity labels from AI models is a realistic possibility. Firms now make AI available to customers via predictions as a service (PaaS). This includes PaaS products for healthcare. It is unclear whether these labels can be used for training a local model without expensive annotation checking by in-house experts. In this work, we propose a new framework for Human Correction of AI-Generated Labels (H-COAL). By ranking AI-generated outputs, one can selectively correct labels and approach gold standard performance (100% human labeling) with significantly less human effort. We show that correcting 5% of labels can close the AI-human performance gap by up to 64% relative improvement, and correcting 20% of labels can close the performance gap by up to 86% relative improvement.

Human facial data hold tremendous potential to address a variety of classification problems, including face recognition, age estimation, gender identification, emotion analysis, and race classification. However, recent privacy regulations, such as the EU General Data Protection Regulation and others, have restricted the ways in which human images may be collected and used for research. As a result, several previously published data sets containing human faces have been removed from the internet due to inadequate data collection methods that failed to meet privacy regulations. Data sets consisting of synthetic data have been proposed as an alternative, but they fall short of accurately representing the real data distribution. On the other hand, most available data sets are labeled for just a single task, which limits their applicability. To address these issues, we present the Multi-Task Faces (MTF) image data set, a meticulously curated collection of face images designed for various classification tasks, including face recognition, as well as race, gender, and age classification. The MTF data set has been ethically gathered by leveraging publicly available images of celebrities and strictly adhering to copyright regulations. In this paper, we present this data set and provide detailed descriptions of the followed data collection and processing procedures. Furthermore, we evaluate the performance of five deep learning (DL) models on the MTF data set across the aforementioned classification tasks. Additionally, we compare the performance of DL models over the processed MTF data and over raw data crawled from the internet. The reported results constitute a baseline for further research employing these data. The MTF data set can be accessed through the following link (please cite the present paper if you use the data set): //github.com/RamiHaf/MTF_data_set

Category information plays a crucial role in enhancing the quality and personalization of recommender systems. Nevertheless, the availability of item category information is not consistently present, particularly in the context of ID-based recommendations. In this work, we propose a novel approach to automatically learn and generate entity (i.e., user or item) category trees for ID-based recommendation. Specifically, we devise a differentiable vector quantization framework for automatic category tree generation, namely CAGE, which enables the simultaneous learning and refinement of categorical code representations and entity embeddings in an end-to-end manner, starting from the randomly initialized states. With its high adaptability, CAGE can be easily integrated into both sequential and non-sequential recommender systems. We validate the effectiveness of CAGE on various recommendation tasks including list completion, collaborative filtering, and click-through rate prediction, across different recommendation models. We release the code and data for others to reproduce the reported results.

Language models have shown promise in various tasks but can be affected by undesired data during training, fine-tuning, or alignment. For example, if some unsafe conversations are wrongly annotated as safe ones, the model fine-tuned on these samples may be harmful. Therefore, the correctness of annotations, i.e., the credibility of the dataset, is important. This study focuses on the credibility of real-world datasets, including the popular benchmarks Jigsaw Civil Comments, Anthropic Harmless & Red Team, PKU BeaverTails & SafeRLHF, that can be used for training a harmless language model. Given the cost and difficulty of cleaning these datasets by humans, we introduce a systematic framework for evaluating the credibility of datasets, identifying label errors, and evaluating the influence of noisy labels in the curated language data, specifically focusing on unsafe comments and conversation classification. With the framework, we find and fix an average of 6.16% label errors in 11 datasets constructed from the above benchmarks. The data credibility and downstream learning performance can be remarkably improved by directly fixing label errors, indicating the significance of cleaning existing real-world datasets. Open-source: //github.com/Docta-ai/docta.

We introduce the Song Describer dataset (SDD), a new crowdsourced corpus of high-quality audio-caption pairs, designed for the evaluation of music-and-language models. The dataset consists of 1.1k human-written natural language descriptions of 706 music recordings, all publicly accessible and released under Creative Common licenses. To showcase the use of our dataset, we benchmark popular models on three key music-and-language tasks (music captioning, text-to-music generation and music-language retrieval). Our experiments highlight the importance of cross-dataset evaluation and offer insights into how researchers can use SDD to gain a broader understanding of model performance.

Automated audio captioning (AAC), a task that mimics human perception as well as innovatively links audio processing and natural language processing, has overseen much progress over the last few years. AAC requires recognizing contents such as the environment, sound events and the temporal relationships between sound events and describing these elements with a fluent sentence. Currently, an encoder-decoder-based deep learning framework is the standard approach to tackle this problem. Plenty of works have proposed novel network architectures and training schemes, including extra guidance, reinforcement learning, audio-text self-supervised learning and diverse or controllable captioning. Effective data augmentation techniques, especially based on large language models are explored. Benchmark datasets and AAC-oriented evaluation metrics also accelerate the improvement of this field. This paper situates itself as a comprehensive survey covering the comparison between AAC and its related tasks, the existing deep learning techniques, datasets, and the evaluation metrics in AAC, with insights provided to guide potential future research directions.

Virtual reality allows creating highly immersive visual and auditory experiences, making users feel physically present in the environment. This makes it an ideal platform to simulate dangerous scenarios, including fire evacuation, and study human behaviour without exposing users to harmful elements. However, human perception of the surroundings is based on the integration of multiple sensory cues (visual, auditory, tactile, or/and olfactory) present in the environment. When some of the sensory stimuli are missing in the virtual experience, it can break the illusion of being there in the environment and could lead to actions that deviate from normal behaviour. In this work, we added an olfactory cue in a well-documented historic hotel fire scenario that was recreated in VR, and examined the effects of the olfactory cue on human behaviour. We conducted a between subject study on 40 naive participants. Our results show that the addition of the olfactory cue could increase behavioural realism. We found that 80% of the studied actions for the VR with olfactory cue condition matched the ones performed by the survivors. In comparison, only 40% of the participants' actions for VR only condition were similar to the survivors.

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

北京阿比特科技有限公司