By using permutation representations of maps, one obtains a bijection between all maps whose underlying graph is isomorphic to a graph $G$ and products of permutations of given cycle types. By using statistics on cycle distributions in products of permutations, one can derive information on the set of all $2$-cell embeddings of $G$. In this paper, we study multistars -- loopless multigraphs in which there is a vertex incident with all the edges. The well known genus distribution of the two-vertex multistar, also known as a dipole, can be used to determine the expected genus of the dipole. We then use a result of Stanley to show that, in general, the expected genus of every multistar with $n$ nonleaf edges lies in an interval of length $2/(n+1)$ centered at the expected genus of an $n$-edge dipole. As an application, we show that the face distribution of the multistar is the same as the face distribution gained when adding a new vertex to a $2$-cell embedded graph, and use this to obtain a general upper bound for the expected number of faces in random embeddings of graphs.
In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.
In neural network-based models for natural language processing (NLP), the largest part of the parameters often consists of word embeddings. Conventional models prepare a large embedding matrix whose size depends on the vocabulary size. Therefore, storing these models in memory and disk storage is costly. In this study, to reduce the total number of parameters, the embeddings for all words are represented by transforming a shared embedding. The proposed method, ALONE (all word embeddings from one), constructs the embedding of a word by modifying the shared embedding with a filter vector, which is word-specific but non-trainable. Then, we input the constructed embedding into a feed-forward neural network to increase its expressiveness. Naively, the filter vectors occupy the same memory size as the conventional embedding matrix, which depends on the vocabulary size. To solve this issue, we also introduce a memory-efficient filter construction approach. We indicate our ALONE can be used as word representation sufficiently through an experiment on the reconstruction of pre-trained word embeddings. In addition, we also conduct experiments on NLP application tasks: machine translation and summarization. We combined ALONE with the current state-of-the-art encoder-decoder model, the Transformer, and achieved comparable scores on WMT 2014 English-to-German translation and DUC 2004 very short summarization with less parameters.
Entity alignment is a viable means for integrating heterogeneous knowledge among different knowledge graphs (KGs). Recent developments in the field often take an embedding-based approach to model the structural information of KGs so that entity alignment can be easily performed in the embedding space. However, most existing works do not explicitly utilize useful relation representations to assist in entity alignment, which, as we will show in the paper, is a simple yet effective way for improving entity alignment. This paper presents a novel joint learning framework for entity alignment. At the core of our approach is a Graph Convolutional Network (GCN) based framework for learning both entity and relation representations. Rather than relying on pre-aligned relation seeds to learn relation representations, we first approximate them using entity embeddings learned by the GCN. We then incorporate the relation approximation into entities to iteratively learn better representations for both. Experiments performed on three real-world cross-lingual datasets show that our approach substantially outperforms state-of-the-art entity alignment methods.
Attributed network embedding aims to learn low-dimensional node representations from both network structure and node attributes. Existing methods can be categorized into two groups: (1) the first group learns two separated node representations from network structure and node attribute respectively and concatenating them together; (2) the other group obtains node representations by translating node attributes into network structure or vice versa. However, both groups have their drawbacks. The first group neglects the correlation between these two types of information, while the second group assumes strong dependence between network structure and node attributes. In this paper, we address attributed network embedding from a novel perspective, i.e., learning representation of a target node via modeling its attributed local subgraph. To achieve this goal, we propose a novel graph auto-encoder framework, namely GraphAE. For a target node, GraphAE first aggregates the attribute information from its attributed local subgrah, obtaining its low-dimensional representation. Next, GraphAE diffuses its representation to nodes in its local subgraph to reconstruct their attribute information. Our proposed perspective transfroms the problem of learning node representations into the problem of modeling the context information manifested in both network structure and node attributes, thus having high capacity to learn good node representations for attributed network. Extensive experimental results on real-world datasets demonstrate that the proposed framework outperforms the state-of-the-art network approaches at the tasks of link prediction and node classification.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
The application of deep learning to symbolic domains remains an active research endeavour. Graph neural networks (GNN), consisting of trained neural modules which can be arranged in different topologies at run time, are sound alternatives to tackle relational problems which lend themselves to graph representations. In this paper, we show that GNNs are capable of multitask learning, which can be naturally enforced by training the model to refine a single set of multidimensional embeddings $\in \mathbb{R}^d$ and decode them into multiple outputs by connecting MLPs at the end of the pipeline. We demonstrate the multitask learning capability of the model in the relevant relational problem of estimating network centrality measures, i.e. is vertex $v_1$ more central than vertex $v_2$ given centrality $c$?. We then show that a GNN can be trained to develop a $lingua$ $franca$ of vertex embeddings from which all relevant information about any of the trained centrality measures can be decoded. The proposed model achieves $89\%$ accuracy on a test dataset of random instances with up to 128 vertices and is shown to generalise to larger problem sizes. The model is also shown to obtain reasonable accuracy on a dataset of real world instances with up to 4k vertices, vastly surpassing the sizes of the largest instances with which the model was trained ($n=128$). Finally, we believe that our contributions attest to the potential of GNNs in symbolic domains in general and in relational learning in particular.
Learning low-dimensional embeddings of knowledge graphs is a powerful approach used to predict unobserved or missing edges between entities. However, an open challenge in this area is developing techniques that can go beyond simple edge prediction and handle more complex logical queries, which might involve multiple unobserved edges, entities, and variables. For instance, given an incomplete biological knowledge graph, we might want to predict "em what drugs are likely to target proteins involved with both diseases X and Y?" -- a query that requires reasoning about all possible proteins that {\em might} interact with diseases X and Y. Here we introduce a framework to efficiently make predictions about conjunctive logical queries -- a flexible but tractable subset of first-order logic -- on incomplete knowledge graphs. In our approach, we embed graph nodes in a low-dimensional space and represent logical operators as learned geometric operations (e.g., translation, rotation) in this embedding space. By performing logical operations within a low-dimensional embedding space, our approach achieves a time complexity that is linear in the number of query variables, compared to the exponential complexity required by a naive enumeration-based approach. We demonstrate the utility of this framework in two application studies on real-world datasets with millions of relations: predicting logical relationships in a network of drug-gene-disease interactions and in a graph-based representation of social interactions derived from a popular web forum.
Accurately classifying malignancy of lesions detected in a screening scan plays a critical role in reducing false positives. Through extracting and analyzing a large numbers of quantitative image features, radiomics holds great potential to differentiate the malignant tumors from benign ones. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. This work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers both sensitivity and specificity simultaneously as the objective functions during the feature selection. In MO-FS, we developed a modified entropy based termination criterion (METC) to stop the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning using the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, an adaptive mutation operation was developed to generate the mutation probability in MO-FS automatically. The MO-FS was evaluated for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. Compared with other commonly used feature selection methods, the experimental results for both lung nodule and breast lesion malignancy classification demonstrated that the feature set by selected MO-FS achieved better classification performance.
Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exist underlying latent variables (assemble of all paths connecting these two nodes) in the KG, which carries the equivalent semantics of their relation. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (\textsc{Diva}) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, \textsc{Diva} is better at handling noise and cope with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on NELL-995 and FB15K datasets and achieve state-of-the-art performances on both datasets.
Random walks are at the heart of many existing network embedding methods. However, such algorithms have many limitations that arise from the use of random walks, e.g., the features resulting from these methods are unable to transfer to new nodes and graphs as they are tied to vertex identity. In this work, we introduce the Role2Vec framework which uses the flexible notion of attributed random walks, and serves as a basis for generalizing existing methods such as DeepWalk, node2vec, and many others that leverage random walks. Our proposed framework enables these methods to be more widely applicable for both transductive and inductive learning as well as for use on graphs with attributes (if available). This is achieved by learning functions that generalize to new nodes and graphs. We show that our proposed framework is effective with an average AUC improvement of 16:55% while requiring on average 853x less space than existing methods on a variety of graphs.