亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-object representation learning aims to represent complex real-world visual input using the composition of multiple objects. Representation learning methods have often used unsupervised learning to segment an input image into individual objects and encode these objects into each latent vector. However, it is not clear how previous methods have achieved the appropriate segmentation of individual objects. Additionally, most of the previous methods regularize the latent vectors using a Variational Autoencoder (VAE). Therefore, it is not clear whether VAE regularization contributes to appropriate object segmentation. To elucidate the mechanism of object segmentation in multi-object representation learning, we conducted an ablation study on MONet, which is a typical method. MONet represents multiple objects using pairs that consist of an attention mask and the latent vector corresponding to the attention mask. Each latent vector is encoded from the input image and attention mask. Then, the component image and attention mask are decoded from each latent vector. The loss function of MONet consists of 1) the sum of reconstruction losses between the input image and decoded component image, 2) the VAE regularization loss of the latent vector, and 3) the reconstruction loss of the attention mask to explicitly encode shape information. We conducted an ablation study on these three loss functions to investigate the effect on segmentation performance. Our results showed that the VAE regularization loss did not affect segmentation performance and the others losses did affect it. Based on this result, we hypothesize that it is important to maximize the attention mask of the image region best represented by a single latent vector corresponding to the attention mask. We confirmed this hypothesis by evaluating a new loss function with the same mechanism as the hypothesis.

相關內容

The human visual system uses two parallel pathways for spatial processing and object recognition. In contrast, computer vision systems tend to use a single feedforward pathway, rendering them less robust, adaptive, or efficient than human vision. To bridge this gap, we developed a dual-stream vision model inspired by the human eyes and brain. At the input level, the model samples two complementary visual patterns to mimic how the human eyes use magnocellular and parvocellular retinal ganglion cells to separate retinal inputs to the brain. At the backend, the model processes the separate input patterns through two branches of convolutional neural networks (CNN) to mimic how the human brain uses the dorsal and ventral cortical pathways for parallel visual processing. The first branch (WhereCNN) samples a global view to learn spatial attention and control eye movements. The second branch (WhatCNN) samples a local view to represent the object around the fixation. Over time, the two branches interact recurrently to build a scene representation from moving fixations. We compared this model with the human brains processing the same movie and evaluated their functional alignment by linear transformation. The WhereCNN and WhatCNN branches were found to differentially match the dorsal and ventral pathways of the visual cortex, respectively, primarily due to their different learning objectives. These model-based results lead us to speculate that the distinct responses and representations of the ventral and dorsal streams are more influenced by their distinct goals in visual attention and object recognition than by their specific bias or selectivity in retinal inputs. This dual-stream model takes a further step in brain-inspired computer vision, enabling parallel neural networks to actively explore and understand the visual surroundings.

Object detection models, a prominent class of machine learning algorithms, aim to identify and precisely locate objects in images or videos. However, this task might yield uneven performances sometimes caused by the objects sizes and the quality of the images and labels used for training. In this paper, we highlight the importance of large objects in learning features that are critical for all sizes. Given these findings, we propose to introduce a weighting term into the training loss. This term is a function of the object area size. We show that giving more weight to large objects leads to improved detection scores across all object sizes and so an overall improvement in Object Detectors performances (+2 p.p. of mAP on small objects, +2 p.p. on medium and +4 p.p. on large on COCO val 2017 with InternImage-T). Additional experiments and ablation studies with different models and on a different dataset further confirm the robustness of our findings.

A realistic human kinematic model that satisfies anatomical constraints is essential for human-robot interaction, biomechanics and robot-assisted rehabilitation. Modeling realistic joint constraints, however, is challenging as human arm motion is constrained by joint limits, inter- and intra-joint dependencies, self-collisions, individual capabilities and muscular or neurological constraints which are difficult to represent. Hence, physicians and researchers have relied on simple box-constraints, ignoring important anatomical factors. In this paper, we propose a data-driven method to learn realistic anatomically constrained upper-limb range of motion (RoM) boundaries from motion capture data. This is achieved by fitting a one-class support vector machine to a dataset of upper-limb joint space exploration motions with an efficient hyper-parameter tuning scheme. Our approach outperforms similar works focused on valid RoM learning. Further, we propose an impairment index (II) metric that offers a quantitative assessment of capability/impairment when comparing healthy and impaired arms. We validate the metric on healthy subjects physically constrained to emulate hemiplegia and different disability levels as stroke patients.

This work focuses on developing methods for approximating the solution operators of a class of parametric partial differential equations via neural operators. Neural operators have several challenges, including the issue of generating appropriate training data, cost-accuracy trade-offs, and nontrivial hyperparameter tuning. The unpredictability of the accuracy of neural operators impacts their applications in downstream problems of inference, optimization, and control. A framework based on the linear variational problem that gives the correction to the prediction furnished by neural operators is considered based on earlier work in JCP 486 (2023) 112104. The operator, called Residual-based Error Corrector Operator or simply Corrector Operator, associated with the corrector problem is analyzed further. Numerical results involving a nonlinear reaction-diffusion model in two dimensions with PCANet-type neural operators show almost two orders of increase in the accuracy of approximations when neural operators are corrected using the correction scheme. Further, topology optimization involving a nonlinear reaction-diffusion model is considered to highlight the limitations of neural operators and the efficacy of the correction scheme. Optimizers with neural operator surrogates are seen to make significant errors (as high as 80 percent). However, the errors are much lower (below 7 percent) when neural operators are corrected.

Secure multiparty computation (MPC) techniques enable multiple parties to compute joint functions over their private data without sharing that data to other parties, typically by employing powerful cryptographic protocols to protect individual's data. One challenge when writing such functions is that most MPC languages force users to intermix programmatic and privacy concerns in a single application, making it difficult to change or audit a program's underlying privacy policy. Existing policy-agnostic MPC languages rely on run-time / dynamic enforcement to decouple privacy requirements from program logic. Unfortunately, the resulting overhead makes it difficult to scale MPC applications that manipulate structured data. This work proposes to eliminate this overhead by instead transforming programs to semantically equivalent versions that statically enforce user-provided privacy policies. We have implemented this approach in a new MPC language, called Taypsi; our experimental evaluation demonstrates that the resulting system features considerable performance improvements on a variety of MPC applications involving structured data and complex privacy polices.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司