亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Finetuning Pretrained Language Models (PLM) for IR has been de facto the standard practice since their breakthrough effectiveness few years ago. But, is this approach well understood? In this paper, we study the impact of the pretraining collection on the final IR effectiveness. In particular, we challenge the current hypothesis that PLM shall be trained on a large enough generic collection and we show that pretraining from scratch on the collection of interest is surprisingly competitive with the current approach. We benchmark first-stage ranking rankers and cross-encoders for reranking on the task of general passage retrieval on MSMARCO, Mr-Tydi for Arabic, Japanese and Russian, and TripClick for specific domain. Contrary to popular belief, we show that, for finetuning first-stage rankers, models pretrained solely on their collection have equivalent or better effectiveness compared to more general models. However, there is a slight effectiveness drop for rerankers pretrained only on the target collection. Overall, our study sheds a new light on the role of the pretraining collection and should make our community ponder on building specialized models by pretraining from scratch. Last but not least, doing so could enable better control of efficiency, data bias and replicability, which are key research questions for the IR community.

相關內容

信(xin)息(xi)檢索(suo)雜志(IR)為信(xin)息(xi)檢索(suo)的(de)(de)廣泛領域中(zhong)的(de)(de)理(li)論、算(suan)法分析和實驗的(de)(de)發布提供了一個國際(ji)論壇。感興趣的(de)(de)主題(ti)包括對應用(yong)程序(xu)(例如Web,社(she)交和流媒(mei)體,推薦系(xi)統和文本檔案(an))的(de)(de)搜(sou)索(suo)、索(suo)引、分析和評估。這包括對搜(sou)索(suo)中(zhong)人為因素的(de)(de)研究、橋接人工智能(neng)和信(xin)息(xi)檢索(suo)以及特定領域的(de)(de)搜(sou)索(suo)應用(yong)程序(xu)。 官網地址(zhi):

In contrast to the natural capabilities of humans to learn new tasks in a sequential fashion, neural networks are known to suffer from catastrophic forgetting, where the model's performances on old tasks drop dramatically after being optimized for a new task. Since then, the continual learning (CL) community has proposed several solutions aiming to equip the neural network with the ability to learn the current task (plasticity) while still achieving high accuracy on the previous tasks (stability). Despite remarkable improvements, the plasticity-stability trade-off is still far from being solved and its underlying mechanism is poorly understood. In this work, we propose Auxiliary Network Continual Learning (ANCL), a novel method that applies an additional auxiliary network which promotes plasticity to the continually learned model which mainly focuses on stability. More concretely, the proposed framework materializes in a regularizer that naturally interpolates between plasticity and stability, surpassing strong baselines on task incremental and class incremental scenarios. Through extensive analyses on ANCL solutions, we identify some essential principles beneath the stability-plasticity trade-off.

Recent years have witnessed a remarkable success of large deep learning models. However, training these models is challenging due to high computational costs, painfully slow convergence, and overfitting issues. In this paper, we present Deep Incubation, a novel approach that enables the efficient and effective training of large models by dividing them into smaller sub-modules that can be trained separately and assembled seamlessly. A key challenge for implementing this idea is to ensure the compatibility of the independently trained sub-modules. To address this issue, we first introduce a global, shared meta model, which is leveraged to implicitly link all the modules together, and can be designed as an extremely small network with negligible computational overhead. Then we propose a module incubation algorithm, which trains each sub-module to replace the corresponding component of the meta model and accomplish a given learning task. Despite the simplicity, our approach effectively encourages each sub-module to be aware of its role in the target large model, such that the finally-learned sub-modules can collaborate with each other smoothly after being assembled. Empirically, our method outperforms end-to-end (E2E) training in terms of both final accuracy and training efficiency. For example, on top of ViT-Huge, it improves the accuracy by 2.7% on ImageNet or achieves similar performance with 4x less training time. Notably, the gains are significant for downstream tasks as well (e.g., object detection and image segmentation on COCO and ADE20K). Code is available at //github.com/LeapLabTHU/Deep-Incubation.

Language models (LMs) have introduced a major paradigm shift in Natural Language Processing (NLP) modeling where large pre-trained LMs became integral to most of the NLP tasks. The LMs are intelligent enough to find useful and relevant representations of the language without any supervision. Perhaps, these models are used to fine-tune typical NLP tasks with significantly high accuracy as compared to the traditional approaches. Conversely, the training of these models requires a massively large corpus that is a good representation of the language. English LMs generally perform better than their other language counterparts, due to the availability of massive English corpora. This work elaborates on the design and development of a large Arabic corpus. It consists of over 500 GB of Arabic cleaned text targeted at improving cross-domain knowledge and downstream generalization capability of large-scale language models. Moreover, the corpus is utilized in the training of a large Arabic LM. In order to evaluate the effectiveness of the LM, a number of typical NLP tasks are fine-tuned. The tasks demonstrate a significant boost from 4.5 to 8.5% when compared to tasks fine-tuned on multi-lingual BERT (mBERT). To the best of my knowledge, this is currently the largest clean and diverse Arabic corpus ever collected.

Rising concerns about privacy and anonymity preservation of deep learning models have facilitated research in data-free learning (DFL). For the first time, we identify that for data-scarce tasks like Sketch-Based Image Retrieval (SBIR), where the difficulty in acquiring paired photos and hand-drawn sketches limits data-dependent cross-modal learning algorithms, DFL can prove to be a much more practical paradigm. We thus propose Data-Free (DF)-SBIR, where, unlike existing DFL problems, pre-trained, single-modality classification models have to be leveraged to learn a cross-modal metric-space for retrieval without access to any training data. The widespread availability of pre-trained classification models, along with the difficulty in acquiring paired photo-sketch datasets for SBIR justify the practicality of this setting. We present a methodology for DF-SBIR, which can leverage knowledge from models independently trained to perform classification on photos and sketches. We evaluate our model on the Sketchy, TU-Berlin, and QuickDraw benchmarks, designing a variety of baselines based on state-of-the-art DFL literature, and observe that our method surpasses all of them by significant margins. Our method also achieves mAPs competitive with data-dependent approaches, all the while requiring no training data. Implementation is available at \url{//github.com/abhrac/data-free-sbir}.

Recent work has shown the promise of creating generalist, transformer-based, policies for language, vision, and sequential decision-making problems. To create such models, we generally require centralized training objectives, data, and compute. It is of interest if we can more flexibly create generalist policies, by merging together multiple, task-specific, individually trained policies. In this work, we take a preliminary step in this direction through merging, or averaging, subsets of Decision Transformers in weight space trained on different MuJoCo locomotion problems, forming multi-task models without centralized training. We also propose that when merging policies, we can obtain better results if all policies start from common, pre-trained initializations, while also co-training on shared auxiliary tasks during problem-specific finetuning. In general, we believe research in this direction can help democratize and distribute the process of which forms generally capable agents.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司