Food image classification is the fundamental step in image-based dietary assessment, which aims to estimate participants' nutrient intake from eating occasion images. A common challenge of food images is the intra-class diversity and inter-class similarity, which can significantly hinder classification performance. To address this issue, we introduce a novel multi-modal contrastive learning framework called FMiFood, which learns more discriminative features by integrating additional contextual information, such as food category text descriptions, to enhance classification accuracy. Specifically, we propose a flexible matching technique that improves the similarity matching between text and image embeddings to focus on multiple key information. Furthermore, we incorporate the classification objectives into the framework and explore the use of GPT-4 to enrich the text descriptions and provide more detailed context. Our method demonstrates improved performance on both the UPMC-101 and VFN datasets compared to existing methods.
The practical use of text-to-image generation has evolved from simple, monolithic models to complex workflows that combine multiple specialized components. While workflow-based approaches can lead to improved image quality, crafting effective workflows requires significant expertise, owing to the large number of available components, their complex inter-dependence, and their dependence on the generation prompt. Here, we introduce the novel task of prompt-adaptive workflow generation, where the goal is to automatically tailor a workflow to each user prompt. We propose two LLM-based approaches to tackle this task: a tuning-based method that learns from user-preference data, and a training-free method that uses the LLM to select existing flows. Both approaches lead to improved image quality when compared to monolithic models or generic, prompt-independent workflows. Our work shows that prompt-dependent flow prediction offers a new pathway to improving text-to-image generation quality, complementing existing research directions in the field.
Accent classification or AC is a task to predict the accent type of an input utterance, and it can be used as a preliminary step toward accented speech recognition and accent conversion. Existing studies have often achieved such classification by training a neural network model to minimize the classification error of the predicted accent label, which can be obtained as a model output. Since we optimize the entire model only from the perspective of classification loss during training time in this approach, the model might learn to predict the accent type from irrelevant features, such as individual speaker identity, which are not informative during test time. To address this problem, we propose a GE2E-AC, in which we train a model to extract accent embedding or AE of an input utterance such that the AEs of the same accent class get closer, instead of directly minimizing the classification loss. We experimentally show the effectiveness of the proposed GE2E-AC, compared to the baseline model trained with the conventional cross-entropy-based loss.
Text-to-SQL technology has become crucial for translating natural language into SQL queries in various industries, enabling non-technical users to perform complex data operations. The need for accurate evaluation methods has increased as these systems have grown more sophisticated. However, we found that the Execution Accuracy (EX), the most promising evaluation metric, still shows a substantial portion of false positives and negatives compared to human evaluation. Thus, this paper introduces FLEX (False-Less EXecution), a novel approach to evaluating text-to-SQL systems using large language models (LLMs) to emulate human expert-level evaluation of SQL queries. Our method shows significantly higher agreement with human expert judgments, improving Cohen's kappa from 61 to 78.17. Re-evaluating top-performing models on the Spider and BIRD benchmarks using FLEX reveals substantial shifts in performance rankings, with an average performance decrease of 3.15 due to false positive corrections and an increase of 6.07 from addressing false negatives. This work contributes to a more accurate and nuanced evaluation of text-to-SQL systems, potentially reshaping our understanding of state-of-the-art performance in this field.
Operating effectively in complex environments while complying with specified constraints is crucial for the safe and successful deployment of robots that interact with and operate around people. In this work, we focus on generating long-horizon trajectories that adhere to novel static and temporally-extended constraints/instructions at test time. We propose a data-driven diffusion-based framework, LTLDoG, that modifies the inference steps of the reverse process given an instruction specified using finite linear temporal logic ($\text{LTL}_f$). LTLDoG leverages a satisfaction value function on $\text{LTL}_f$ and guides the sampling steps using its gradient field. This value function can also be trained to generalize to new instructions not observed during training, enabling flexible test-time adaptability. Experiments in robot navigation and manipulation illustrate that the method is able to generate trajectories that satisfy formulae that specify obstacle avoidance and visitation sequences. Code and supplementary material are available online at //github.com/clear-nus/ltldog.
Activity recognition is a challenging task due to the large scale of trajectory data and the need for prompt and efficient processing. Existing methods have attempted to mitigate this problem by employing traditional LSTM architectures, but these approaches often suffer from inefficiencies in processing large datasets. In response to this challenge, we propose VecLSTM, a novel framework that enhances the performance and efficiency of LSTM-based neural networks. Unlike conventional approaches, VecLSTM incorporates vectorization layers, leveraging optimized mathematical operations to process input sequences more efficiently. We have implemented VecLSTM and incorporated it into the MySQL database. To evaluate the effectiveness of VecLSTM, we compare its performance against a conventional LSTM model using a dataset comprising 1,467,652 samples with seven unique labels. Experimental results demonstrate superior accuracy and efficiency compared to the state-of-the-art, with VecLSTM achieving a validation accuracy of 85.57\%, a test accuracy of 85.47\%, and a weighted F1-score of 0.86. Furthermore, VecLSTM significantly reduces training time, offering a 26.2\% reduction compared to traditional LSTM models.
Unsupervised instance segmentation aims to segment distinct object instances in an image without relying on human-labeled data. This field has recently seen significant advancements, partly due to the strong local correspondences afforded by rich visual feature representations from self-supervised models (e.g., DINO). Recent state-of-the-art approaches use self-supervised features to represent images as graphs and solve a generalized eigenvalue system (i.e., normalized-cut) to generate foreground masks. While effective, this strategy is limited by its attendant computational demands, leading to slow inference speeds. In this paper, we propose Prompt and Merge (ProMerge), which leverages self-supervised visual features to obtain initial groupings of patches and applies a strategic merging to these segments, aided by a sophisticated background-based mask pruning technique. ProMerge not only yields competitive results but also offers a significant reduction in inference time compared to state-of-the-art normalized-cut-based approaches. Furthermore, when training an object detector using our mask predictions as pseudo-labels, the resulting detector surpasses the current leading unsupervised model on various challenging instance segmentation benchmarks.
Enterprises grapple with the significant challenge of managing proprietary unstructured data, hindering efficient information retrieval. This has led to the emergence of AI-driven information retrieval solutions, designed to adeptly extract relevant insights to address employee inquiries. These solutions often leverage pre-trained embedding models and generative models as foundational components. While pre-trained embeddings may exhibit proximity or disparity based on their original training objectives, they might not fully align with the unique characteristics of enterprise-specific data, leading to suboptimal alignment with the retrieval goals of enterprise environments. In this paper, we propose a comprehensive methodology for contextualizing pre-trained embedding models to enterprise environments, covering the entire process from data preparation to model fine-tuning and evaluation. By adapting the embeddings to better suit the retrieval tasks prevalent in enterprises, we aim to enhance the performance of information retrieval solutions. We discuss the process of fine-tuning, its effect on retrieval accuracy, and the potential benefits for enterprise information management. Our findings demonstrate the efficacy of fine-tuned embedding models in improving the precision and relevance of search results in enterprise settings.
Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.