亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-document summarization is a challenging task due to its inherent subjective bias, highlighted by the low inter-annotator ROUGE-1 score of 0.4 among DUC-2004 reference summaries. In this work, we aim to enhance the objectivity of news summarization by focusing on the main event of a group of related news documents and presenting it coherently with sufficient context. Our primary objective is to succinctly report the main event, ensuring that the summary remains objective and informative. To achieve this, we employ an extract-rewrite approach that incorporates a main-event biased monotone-submodular function for content selection. This enables us to extract the most crucial information related to the main event from the document cluster. To ensure coherence, we utilize a fine-tuned Language Model (LLM) for rewriting the extracted content into a coherent text. The evaluation using objective metrics and human evaluators confirms the effectiveness of our approach, as it surpasses potential baselines, demonstrating excellence in both content coverage, coherence, and informativeness.

相關內容

Object detection models are commonly used for people counting (and localization) in many applications but require a dataset with costly bounding box annotations for training. Given the importance of privacy in people counting, these models rely more and more on infrared images, making the task even harder. In this paper, we explore how weaker levels of supervision can affect the performance of deep person counting architectures for image classification and point-level localization. Our experiments indicate that counting people using a CNN Image-Level model achieves competitive results with YOLO detectors and point-level models, yet provides a higher frame rate and a similar amount of model parameters.

Overlapping asymmetric datasets are common in data science and pose questions of how they can be incorporated together into a predictive analysis. In healthcare datasets there is often a small amount of information that is available for a larger number of patients such as an electronic health record, however a small number of patients may have had extensive further testing. Common solutions such as missing imputation can often be unwise if the smaller cohort is significantly different in scale to the larger sample, therefore the aim of this research is to develop a new method which can model the smaller cohort against a particular response, whilst considering the larger cohort also. Motivated by non-parametric models, and specifically flexible smoothing techniques via generalized additive models, we model a twice penalized P-Spline approximation method to firstly prevent over/under-fitting of the smaller cohort and secondly to consider the larger cohort. This second penalty is created through discrepancies in the marginal value of covariates that exist in both the smaller and larger cohorts. Through data simulations, parameter tunings and model adaptations to consider a continuous and binary response, we find our twice penalized approach offers an enhanced fit over a linear B-Spline and once penalized P-Spline approximation. Applying to a real-life dataset relating to a person's risk of developing Non-Alcoholic Steatohepatitis, we see an improved model fit performance of over 65%. Areas for future work within this space include adapting our method to not require dimensionality reduction and also consider parametric modelling methods. However, to our knowledge this is the first work to propose additional marginal penalties in a flexible regression of which we can report a vastly improved model fit that is able to consider asymmetric datasets, without the need for missing data imputation.

On-orbit operations such as servicing and assembly are considered a priority for the future space industry. Ground-based facilities that emulate on-orbit interactions are key tools for developing and testing space technology. This paper presents a control framework to emulate on-orbit operations using on-ground robotic manipulators. It combines Virtual Forward Dynamics Models (VFDM) for Cartesian motion control of robotic manipulators with an Orbital Dynamics Simulator (ODS) based on the Clohessy Wiltshire (CW) Model. The VFDM-based Inverse Kinematics (IK) solver is known to have better motion tracking, path accuracy, and solver convergency than traditional IK solvers. Thus, it provides a stable Cartesian motion for manipulators based on orbit emulations, even at singular or near singular configurations. The framework is tested at the ZeroG-Lab robotic facility of the SnT by emulating two scenarios: free-floating satellite motion and free-floating interaction (collision). Results show fidelity between the simulated motion commanded by the ODS and the one executed by the robot-mounted mockups.

Sharpness-aware minimization (SAM) was proposed to reduce sharpness of minima and has been shown to enhance generalization performance in various settings. In this work we show that perturbing only the affine normalization parameters (typically comprising 0.1% of the total parameters) in the adversarial step of SAM can outperform perturbing all of the parameters.This finding generalizes to different SAM variants and both ResNet (Batch Normalization) and Vision Transformer (Layer Normalization) architectures. We consider alternative sparse perturbation approaches and find that these do not achieve similar performance enhancement at such extreme sparsity levels, showing that this behaviour is unique to the normalization layers. Although our findings reaffirm the effectiveness of SAM in improving generalization performance, they cast doubt on whether this is solely caused by reduced sharpness.

Chain-of-Thought (CoT) prompting has boosted the multi-step reasoning capabilities of Large Language Models (LLMs) by generating a series of rationales before the final answer. We analyze the reasoning paths generated by CoT and find two issues in multi-step reasoning: (i) Generating rationales irrelevant to the question, (ii) Unable to compose subquestions or queries for generating/retrieving all the relevant information. To address them, we propose a graph-guided CoT prompting method, which guides the LLMs to reach the correct answer with graph representation/verification steps. Specifically, we first leverage LLMs to construct a "question/rationale graph" by using knowledge extraction prompting given the initial question and the rationales generated in the previous steps. Then, the graph verification step diagnoses the current rationale triplet by comparing it with the existing question/rationale graph to filter out irrelevant rationales and generate follow-up questions to obtain relevant information. Additionally, we generate CoT paths that exclude the extracted graph information to represent the context information missed from the graph extraction. Our graph-guided reasoning method shows superior performance compared to previous CoT prompting and the variants on multi-hop question answering benchmark datasets.

Cross-modal MRI segmentation is of great value for computer-aided medical diagnosis, enabling flexible data acquisition and model generalization. However, most existing methods have difficulty in handling local variations in domain shift and typically require a significant amount of data for training, which hinders their usage in practice. To address these problems, we propose a novel adaptive domain generalization framework, which integrates a learning-free cross-domain representation based on image gradient maps and a class prior-informed test-time adaptation strategy for mitigating local domain shift. We validate our approach on two multi-modal MRI datasets with six cross-modal segmentation tasks. Across all the task settings, our method consistently outperforms competing approaches and shows a stable performance even with limited training data.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司