亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Increasing diversity in educational settings is challenging in part due to the lack of access to resources for non-traditional learners in remote communities. Post-pandemic platforms designed specifically for remote and hybrid learning -- supporting team-based collaboration online -- are positioned to bridge this gap. Our work combines the use of these new platforms with co-creation and collaboration tools for AI assisted remote Work-Integrated-Learning (WIL) opportunities, including efforts in community and with the public library system. This paper outlines some of our experiences to date, and proposes methods to further integrate AI education into community-driven applications for remote WIL.

相關內容

Large Language Models (LLMs) are frequently discussed in academia and the general public as support tools for virtually any use case that relies on the production of text, including software engineering. Currently there is much debate, but little empirical evidence, regarding the practical usefulness of LLM-based tools such as ChatGPT for engineers in industry. We conduct an observational study of 24 professional software engineers who have been using ChatGPT over a period of one week in their jobs, and qualitatively analyse their dialogues with the chatbot as well as their overall experience (as captured by an exit survey). We find that, rather than expecting ChatGPT to generate ready-to-use software artifacts (e.g., code), practitioners more often use ChatGPT to receive guidance on how to solve their tasks or learn about a topic in more abstract terms. We also propose a theoretical framework for how (i) purpose of the interaction, (ii) internal factors (e.g., the user's personality), and (iii) external factors (e.g., company policy) together shape the experience (in terms of perceived usefulness and trust). We envision that our framework can be used by future research to further the academic discussion on LLM usage by software engineering practitioners, and to serve as a reference point for the design of future empirical LLM research in this domain.

Covariate distribution shifts and adversarial perturbations present robustness challenges to the conventional statistical learning framework: mild shifts in the test covariate distribution can significantly affect the performance of the statistical model learned based on the training distribution. The model performance typically deteriorates when extrapolation happens: namely, covariates shift to a region where the training distribution is scarce, and naturally, the learned model has little information. For robustness and regularization considerations, adversarial perturbation techniques are proposed as a remedy; however, careful study needs to be carried out about what extrapolation region adversarial covariate shift will focus on, given a learned model. This paper precisely characterizes the extrapolation region, examining both regression and classification in an infinite-dimensional setting. We study the implications of adversarial covariate shifts to subsequent learning of the equilibrium -- the Bayes optimal model -- in a sequential game framework. We exploit the dynamics of the adversarial learning game and reveal the curious effects of the covariate shift to equilibrium learning and experimental design. In particular, we establish two directional convergence results that exhibit distinctive phenomena: (1) a blessing in regression, the adversarial covariate shifts in an exponential rate to an optimal experimental design for rapid subsequent learning; (2) a curse in classification, the adversarial covariate shifts in a subquadratic rate to the hardest experimental design trapping subsequent learning.

Conversation requires a substantial amount of coordination between dialogue participants, from managing turn taking to negotiating mutual understanding. Part of this coordination effort surfaces as the reuse of linguistic behaviour across speakers, a process often referred to as alignment. While the presence of linguistic alignment is well documented in the literature, several questions remain open, including the extent to which patterns of reuse across speakers have an impact on the emergence of labelling conventions for novel referents. In this study, we put forward a methodology for automatically detecting shared lemmatised constructions -- expressions with a common lexical core used by both speakers within a dialogue -- and apply it to a referential communication corpus where participants aim to identify novel objects for which no established labels exist. Our analyses uncover the usage patterns of shared constructions in interaction and reveal that features such as their frequency and the amount of different constructions used for a referent are associated with the degree of object labelling convergence the participants exhibit after social interaction. More generally, the present study shows that automatically detected shared constructions offer a useful level of analysis to investigate the dynamics of reference negotiation in dialogue.

The surgical intervention is crucial to patient healthcare, and many studies have developed advanced algorithms to provide understanding and decision-making assistance for surgeons. Despite great progress, these algorithms are developed for a single specific task and scenario, and in practice require the manual combination of different functions, thus limiting the applicability. Thus, an intelligent and versatile surgical assistant is expected to accurately understand the surgeon's intentions and accordingly conduct the specific tasks to support the surgical process. In this work, by leveraging advanced multimodal large language models (MLLMs), we propose a Versatile Surgery Assistant (VS-Assistant) that can accurately understand the surgeon's intention and complete a series of surgical understanding tasks, e.g., surgical scene analysis, surgical instrument detection, and segmentation on demand. Specifically, to achieve superior surgical multimodal understanding, we devise a mixture of projectors (MOP) module to align the surgical MLLM in VS-Assistant to balance the natural and surgical knowledge. Moreover, we devise a surgical Function-Calling Tuning strategy to enable the VS-Assistant to understand surgical intentions, and thus make a series of surgical function calls on demand to meet the needs of the surgeons. Extensive experiments on neurosurgery data confirm that our VS-Assistant can understand the surgeon's intention more accurately than the existing MLLM, resulting in overwhelming performance in textual analysis and visual tasks. Source code and models will be made public.

Many industry verticals are confronted with small-sized tabular data. In this low-data regime, it is currently unclear whether the best performance can be expected from simple baselines, or more complex machine learning approaches that leverage meta-learning and ensembling. On 44 tabular classification datasets with sample sizes $\leq$ 500, we find that L2-regularized logistic regression performs similar to state-of-the-art automated machine learning (AutoML) frameworks (AutoPrognosis, AutoGluon) and off-the-shelf deep neural networks (TabPFN, HyperFast) on the majority of the benchmark datasets. We therefore recommend to consider logistic regression as the first choice for data-scarce applications with tabular data and provide practitioners with best practices for further method selection.

The rising popularity of multimodal large language models (MLLMs) has sparked a significant increase in research dedicated to evaluating these models. However, current evaluation studies predominantly concentrate on the ability of models to comprehend and reason within a unimodal (vision-only) context, overlooking critical performance evaluations in complex multimodal reasoning tasks that integrate both visual and text contexts. Furthermore, tasks that demand reasoning across multiple modalities pose greater challenges and require a deep understanding of multimodal contexts. In this paper, we introduce a comprehensive assessment framework named MM-InstructEval, which integrates a diverse array of metrics to provide an extensive evaluation of the performance of various models and instructions across a broad range of multimodal reasoning tasks with vision-text contexts. MM-InstructEval enhances the research on the performance of MLLMs in complex multimodal reasoning tasks, facilitating a more thorough and holistic zero-shot evaluation of MLLMs. We firstly utilize the "Best Performance" metric to determine the upper performance limit of each model across various datasets. The "Mean Relative Gain" metric provides an analysis of the overall performance across different models and instructions, while the "Stability" metric evaluates their sensitivity to variations. Historically, the research has focused on evaluating models independently or solely assessing instructions, overlooking the interplay between models and instructions. To address this gap, we introduce the "Adaptability" metric, designed to quantify the degree of adaptability between models and instructions. Evaluations are conducted on 31 models (23 MLLMs) across 16 multimodal datasets, covering 6 tasks, with 10 distinct instructions. The extensive analysis enables us to derive novel insights.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司