DUS transformation of lifetime distributions received attention by engineers and researchers in recent years. The present study introduces a new class of distribution using exponentiation of DUS transformation. A new distribution using the Exponential distribution as the baseline distribution in this transformation is proposed. The statistical properties of the proposed distribution have been examined and the parameter estimation is done using the method of maximum likelihood. The fitness of the proposed model is established using real data analysis.
This article introduces an informative goodness-of-fit (iGOF) approach to study multivariate distributions. When the null model is rejected, iGOF allows us to identify the underlying sources of mismodeling and naturally equips practitioners with additional insights on the nature of the deviations from the true distribution. The informative character of the procedure is achieved by exploiting smooth tests and random fields theory to facilitate the analysis of multivariate data. Simulation studies show that iGOF enjoys high power for different types of alternatives. The methods presented here directly address the problem of background mismodeling arising in physics and astronomy. It is in these areas that the motivation of this work is rooted.
One of the main reasons for query model's prominence in quantum complexity is the presence of concrete lower bounding techniques: polynomial method and adversary method. There have been considerable efforts to not just give lower bounds using these methods but even to compare and relate them. We explore the value of these bounds on quantum query complexity for the class of symmetric functions, arguably one of the most natural and basic set of Boolean functions. We show that the recently introduced measure of spectral sensitivity give the same value as both these bounds (positive adversary and approximate degree) for every total symmetric Boolean function. We also look at the quantum query complexity of Gap Majority, a partial symmetric function. It has gained importance recently in regard to understanding the composition of randomized query complexity. We characterize the quantum query complexity of Gap Majority and show a lower bound on noisy randomized query complexity (Ben-David and Blais, FOCS 2020) in terms of quantum query complexity. In addition, we study how large certificate complexity and block sensitivity can be as compared to sensitivity (even up to constant factors) for symmetric functions. We show tight separations, i.e., give upper bound on possible separations and construct functions achieving the same.
A singularly perturbed parabolic problem of convection-diffusion type with a discontinuous initial condition is examined. A particular complimentary error function is identified which matches the discontinuity in the initial condition. The difference between this analytical function and the solution of the parabolic problem is approximated numerically. A co-ordinate transformation is used so that a layer-adapted mesh can be aligned to the interior layer present in the solution. Numerical analysis is presented for the associated numerical method, which establishes that the numerical method is a parameter-uniform numerical method. Numerical results are presented to illustrate the pointwise error bounds established in the paper.
In the problem of classical group testing one aims to identify a small subset (of size $d$) diseased individuals/defective items in a large population (of size $n$). This process is based on a minimal number of suitably-designed group tests on subsets of items, where the test outcome is positive iff the given test contains at least one defective item. Motivated by physical considerations, we consider a generalized setting that includes as special cases multiple other group-testing-like models in the literature. In our setting, which subsumes as special cases a variety of noiseless and noisy group-testing models in the literature, the test outcome is positive with probability $f(x)$, where $x$ is the number of defectives tested in a pool, and $f(\cdot)$ is an arbitrary monotonically increasing (stochastic) test function. Our main contributions are as follows. 1. We present a non-adaptive scheme that with probability $1-\varepsilon$ identifies all defective items. Our scheme requires at most ${\cal O}( H(f) d\log\left(\frac{n}{\varepsilon}\right))$ tests, where $H(f)$ is a suitably defined "sensitivity parameter" of $f(\cdot)$, and is never larger than ${\cal O}\left(d^{1+o(1)}\right)$, but may be substantially smaller for many $f(\cdot)$. 2. We argue that any non-adaptive group testing scheme needs at least $\Omega \left((1-\varepsilon)h(f) d\log\left(\frac n d\right)\right)$ tests to ensure reliable recovery. Here $h(f) \geq 1$ is a suitably defined "concentration parameter" of $f(\cdot)$. 3. We prove that $\frac{H(f)}{h(f)}\in\Theta(1)$ for a variety of sparse-recovery group-testing models in the literature, and $\frac {H(f)} {h(f)} \in {\cal O}\left(d^{1+o(1)}\right)$ for any other test function.
We consider generative adversarial networks (GAN) for estimating parameters in a deep generative model. The data-generating distribution is assumed to concentrate around some low-dimensional structure, making the target distribution singular to the Lebesgue measure. Under this assumption, we obtain convergence rates of a GAN type estimator with respect to the Wasserstein metric. The convergence rate depends only on the noise level, intrinsic dimension and smoothness of the underlying structure. Furthermore, the rate is faster than that obtained by likelihood approaches, which provides insights into why GAN approaches perform better in many real problems. A lower bound of the minimax optimal rate is also investigated.
In real word applications, data generating process for training a machine learning model often differs from what the model encounters in the test stage. Understanding how and whether machine learning models generalize under such distributional shifts have been a theoretical challenge. Here, we study generalization in kernel regression when the training and test distributions are different using methods from statistical physics. Using the replica method, we derive an analytical formula for the out-of-distribution generalization error applicable to any kernel and real datasets. We identify an overlap matrix that quantifies the mismatch between distributions for a given kernel as a key determinant of generalization performance under distribution shift. Using our analytical expressions we elucidate various generalization phenomena including possible improvement in generalization when there is a mismatch. We develop procedures for optimizing training and test distributions for a given data budget to find best and worst case generalizations under the shift. We present applications of our theory to real and synthetic datasets and for many kernels. We compare results of our theory applied to Neural Tangent Kernel with simulations of wide networks and show agreement. We analyze linear regression in further depth.
We investigate robust linear regression where data may be contaminated by an oblivious adversary, i.e., an adversary than may know the data distribution but is otherwise oblivious to the realizations of the data samples. This model has been previously analyzed under strong assumptions. Concretely, $\textbf{(i)}$ all previous works assume that the covariance matrix of the features is positive definite; and $\textbf{(ii)}$ most of them assume that the features are centered (i.e. zero mean). Additionally, all previous works make additional restrictive assumption, e.g., assuming that the features are Gaussian or that the corruptions are symmetrically distributed. In this work we go beyond these assumptions and investigate robust regression under a more general set of assumptions: $\textbf{(i)}$ we allow the covariance matrix to be either positive definite or positive semi definite, $\textbf{(ii)}$ we do not necessarily assume that the features are centered, $\textbf{(iii)}$ we make no further assumption beyond boundedness (sub-Gaussianity) of features and measurement noise. Under these assumption we analyze a natural SGD variant for this problem and show that it enjoys a fast convergence rate when the covariance matrix is positive definite. In the positive semi definite case we show that there are two regimes: if the features are centered we can obtain a standard convergence rate; otherwise the adversary can cause any learner to fail arbitrarily.
We introduce a methodology for robust Bayesian estimation with robust divergence (e.g., density power divergence or {\gamma}-divergence), indexed by a single tuning parameter. It is well known that the posterior density induced by robust divergence gives highly robust estimators against outliers if the tuning parameter is appropriately and carefully chosen. In a Bayesian framework, one way to find the optimal tuning parameter would be using evidence (marginal likelihood). However, we numerically illustrate that evidence induced by the density power divergence does not work to select the optimal tuning parameter since robust divergence is not regarded as a statistical model. To overcome the problems, we treat the exponential of robust divergence as an unnormalized statistical model, and we estimate the tuning parameter via minimizing the Hyvarinen score. We also provide adaptive computational methods based on sequential Monte Carlo (SMC) samplers, which enables us to obtain the optimal tuning parameter and samples from posterior distributions simultaneously. The empirical performance of the proposed method through simulations and an application to real data are also provided.
Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.
This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.