亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Discontinuous motion which is a motion composed of multiple continuous motions with sudden change in direction or velocity in between, can be seen in state-aware robotic tasks. Such robotic tasks are often coordinated with sensor information such as image. In recent years, Dynamic Movement Primitives (DMP) which is a method for generating motor behaviors suitable for robotics has garnered several deep learning based improvements to allow associations between sensor information and DMP parameters. While the implementation of deep learning framework does improve upon DMP's inability to directly associate to an input, we found that it has difficulty learning DMP parameters for complex motion which requires large number of basis functions to reconstruct. In this paper we propose a novel deep learning network architecture called Deep Segmented DMP Network (DSDNet) which generates variable-length segmented motion by utilizing the combination of multiple DMP parameters predicting network architecture, double-stage decoder network, and number of segments predictor. The proposed method is evaluated on both artificial data (object cutting & pick-and-place) and real data (object cutting) where our proposed method could achieve high generalization capability, task-achievement, and data-efficiency compared to previous method on generating discontinuous long-horizon motions.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We provide a variety of lower bounds for the well-known shortcut set problem: how much can one decrease the diameter of a directed graph on $n$ vertices and $m$ edges by adding $O(n)$ or $O(m)$ of shortcuts from the transitive closure of the graph. Our results are based on a vast simplification of the recent construction of Bodwin and Hoppenworth [FOCS 2023] which was used to show an $\widetilde{\Omega}(n^{1/4})$ lower bound for the $O(n)$-sized shortcut set problem. We highlight that our simplification completely removes the use of the convex sets by B\'ar\'any and Larman [Math. Ann. 1998] used in all previous lower bound constructions. Our simplification also removes the need for randomness and further removes some log factors. This allows us to generalize the construction to higher dimensions, which in turn can be used to show the following results. For $O(m)$-sized shortcut sets, we show an $\Omega(n^{1/5})$ lower bound, improving on the previous best $\Omega(n^{1/8})$ lower bound. For all $\varepsilon > 0$, we show that there exists a $\delta > 0$ such that there are $n$-vertex $O(n)$-edge graphs $G$ where adding any shortcut set of size $O(n^{2-\varepsilon})$ keeps the diameter of $G$ at $\Omega(n^\delta)$. This improves the sparsity of the constructed graph compared to a known similar result by Hesse [SODA 2003]. We also consider the sourcewise setting for shortcut sets: given a graph $G=(V,E)$, a set $S\subseteq V$, how much can we decrease the sourcewise diameter of $G$, $\max_{(s, v) \in S \times V, \text{dist}(s, v) < \infty} \text{dist}(s,v)$ by adding a set of edges $H$ from the transitive closure of $G$? We show that for any integer $d \ge 2$, there exists a graph $G=(V, E)$ on $n$ vertices and $S \subseteq V$ with $|S| = \widetilde{\Theta}(n^{3/(d+3)})$, such that when adding $O(n)$ or $O(m)$ shortcuts, the sourcewise diameter is $\widetilde{\Omega}(|S|^{1/3})$.

Variational flows allow practitioners to learn complex continuous distributions, but approximating discrete distributions remains a challenge. Current methodologies typically embed the discrete target in a continuous space - usually via continuous relaxation or dequantization - and then apply a continuous flow. These approaches involve a surrogate target that may not capture the original discrete target, might have biased or unstable gradients, and can create a difficult optimization problem. In this work, we develop a variational flow family for discrete distributions without any continuous embedding. First, we develop a measure-preserving and discrete (MAD) invertible map that leaves the discrete target invariant, and then create a mixed variational flow (MAD Mix) based on that map. Our family provides access to i.i.d. sampling and density evaluation with virtually no tuning effort. We also develop an extension to MAD Mix that handles joint discrete and continuous models. Our experiments suggest that MAD Mix produces more reliable approximations than continuous-embedding flows while being significantly faster to train.

Generative Adversarial Networks (GAN) is a model for data synthesis, which creates plausible data through the competition of generator and discriminator. Although GAN application to image synthesis is extensively studied, it has inherent limitations to natural language generation. Because natural language is composed of discrete tokens, a generator has difficulty updating its gradient through backpropagation; therefore, most text-GAN studies generate sentences starting with a random token based on a reward system. Thus, the generators of previous studies are pre-trained in an autoregressive way before adversarial training, causing data memorization that synthesized sentences reproduce the training data. In this paper, we synthesize sentences using a framework similar to the original GAN. More specifically, we propose Text Embedding Space Generative Adversarial Networks (TESGAN) which generate continuous text embedding spaces instead of discrete tokens to solve the gradient backpropagation problem. Furthermore, TESGAN conducts unsupervised learning which does not directly refer to the text of the training data to overcome the data memorization issue. By adopting this novel method, TESGAN can synthesize new sentences, showing the potential of unsupervised learning for text synthesis. We expect to see extended research combining Large Language Models with a new perspective of viewing text as an continuous space.

Solving ill-posed inverse problems requires careful formulation of prior beliefs over the signals of interest and an accurate description of their manifestation into noisy measurements. Handcrafted signal priors based on e.g. sparsity are increasingly replaced by data-driven deep generative models, and several groups have recently shown that state-of-the-art score-based diffusion models yield particularly strong performance and flexibility. In this paper, we show that the powerful paradigm of posterior sampling with diffusion models can be extended to include rich, structured, noise models. To that end, we propose a joint conditional reverse diffusion process with learned scores for the noise and signal-generating distribution. We demonstrate strong performance gains across various inverse problems with structured noise, outperforming competitive baselines that use normalizing flows and adversarial networks. This opens up new opportunities and relevant practical applications of diffusion modeling for inverse problems in the context of non-Gaussian measurement models.

Stochastic gradient descent (SGD) or stochastic approximation has been widely used in model training and stochastic optimization. While there is a huge literature on analyzing its convergence, inference on the obtained solutions from SGD has only been recently studied, yet is important due to the growing need for uncertainty quantification. We investigate two computationally cheap resampling-based methods to construct confidence intervals for SGD solutions. One uses multiple, but few, SGDs in parallel via resampling with replacement from the data, and another operates this in an online fashion. Our methods can be regarded as enhancements of established bootstrap schemes to substantially reduce the computation effort in terms of resampling requirements, while at the same time bypassing the intricate mixing conditions in existing batching methods. We achieve these via a recent so-called cheap bootstrap idea and Berry-Esseen-type bound for SGD.

Recently, SyncMap pioneered an approach to learn complex structures from sequences as well as adapt to any changes in underlying structures. This is achieved by using only nonlinear dynamical equations inspired by neuron group behaviors, i.e., without loss functions. Here we propose Symmetrical SyncMap that goes beyond the original work to show how to create dynamical equations and attractor-repeller points which are stable over the long run, even dealing with imbalanced continual general chunking problems (CGCPs). The main idea is to apply equal updates from negative and positive feedback loops by symmetrical activation. We then introduce the concept of memory window to allow for more positive updates. Our algorithm surpasses or ties other unsupervised state-of-the-art baselines in all 12 imbalanced CGCPs with various difficulties, including dynamically changing ones. To verify its performance in real-world scenarios, we conduct experiments on several well-studied structure learning problems. The proposed method surpasses substantially other methods in 3 out of 4 scenarios, suggesting that symmetrical activation plays a critical role in uncovering topological structures and even hierarchies encoded in temporal data.

Diffusion models (DMs) have demonstrated advantageous potential on generative tasks. Widespread interest exists in incorporating DMs into downstream applications, such as producing or editing photorealistic images. However, practical deployment and unprecedented power of DMs raise legal issues, including copyright protection and monitoring of generated content. In this regard, watermarking has been a proven solution for copyright protection and content monitoring, but it is underexplored in the DMs literature. Specifically, DMs generate samples from longer tracks and may have newly designed multimodal structures, necessitating the modification of conventional watermarking pipelines. To this end, we conduct comprehensive analyses and derive a recipe for efficiently watermarking state-of-the-art DMs (e.g., Stable Diffusion), via training from scratch or finetuning. Our recipe is straightforward but involves empirically ablated implementation details, providing a foundation for future research on watermarking DMs. The code is available at //github.com/yunqing-me/WatermarkDM.

Proximal causal learning is a promising framework for identifying the causal effect under the existence of unmeasured confounders. Within this framework, the doubly robust (DR) estimator was derived and has shown its effectiveness in estimation, especially when the model assumption is violated. However, the current form of the DR estimator is restricted to binary treatments, while the treatment can be continuous in many real-world applications. The primary obstacle to continuous treatments resides in the delta function present in the original DR estimator, making it infeasible in causal effect estimation and introducing a heavy computational burden in nuisance function estimation. To address these challenges, we propose a kernel-based DR estimator that can well handle continuous treatments. Equipped with its smoothness, we show that its oracle form is a consistent approximation of the influence function. Further, we propose a new approach to efficiently solve the nuisance functions. We then provide a comprehensive convergence analysis in terms of the mean square error. We demonstrate the utility of our estimator on synthetic datasets and real-world applications.

In this work, a local Fourier analysis is presented to study the convergence of multigrid methods based on additive Schwarz smoothers. This analysis is presented as a general framework which allows us to study these smoothers for any type of discretization and problem. The presented framework is crucial in practice since it allows one to know a priori the answer to questions such as what is the size of the patch to use within these relaxations, the size of the overlapping, or even the optimal values for the weights involved in the smoother. Results are shown for a class of additive and restricted additive Schwarz relaxations used within a multigrid framework applied to high-order finite-element discretizations and saddle point problems, which are two of the contexts in which these type of relaxations are widely used.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司