亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For their attractiveness, comprehensiveness and dynamic coverage of relevant topics, community-based question answering sites such as Stack Overflow heavily rely on the engagement of their communities: Questions on new technologies, technology features as well as technology versions come up and have to be answered as technology evolves (and as community members gather experience with it). At the same time, other questions cease in importance over time, finally becoming irrelevant to users. Beyond filtering low-quality questions, "forgetting" questions, which have become redundant, is an important step for keeping the Stack Overflow content concise and useful. In this work, we study this managed forgetting task for Stack Overflow. Our work is based on data from more than a decade (2008 - 2019) - covering 18.1M questions, that are made publicly available by the site itself. For establishing a deeper understanding, we first analyze and characterize the set of questions about to be forgotten, i.e., questions that get a considerable number of views in the current period but become unattractive in the near future. Subsequently, we examine the capability of a wide range of features in predicting such forgotten questions in different categories. We find some categories in which those questions are more predictable. We also discover that the text-based features are surprisingly not helpful in this prediction task, while the meta information is much more predictive.

相關內容

 Stack Overflow 是一個程序設計領域的問答網站,隸屬于 Stack Exchange 網絡。

Recently emerged federated learning (FL) is an attractive distributed learning framework in which numerous wireless end-user devices can train a global model with the data remained autochthonous. Compared with the traditional machine learning framework that collects user data for centralized storage, which brings huge communication burden and concerns about data privacy, this approach can not only save the network bandwidth but also protect the data privacy. Despite the promising prospect, byzantine attack, an intractable threat in conventional distributed network, is discovered to be rather efficacious against FL as well. In this paper, we conduct a comprehensive investigation of the state-of-the-art strategies for defending against byzantine attacks in FL. We first provide a taxonomy for the existing defense solutions according to the techniques they used, followed by an across-the-board comparison and discussion. Then we propose a new byzantine attack method called weight attack to defeat those defense schemes, and conduct experiments to demonstrate its threat. The results show that existing defense solutions, although abundant, are still far from fully protecting FL. Finally, we indicate possible countermeasures for weight attack, and highlight several challenges and future research directions for mitigating byzantine attacks in FL.

Search engines play an essential role in our daily lives. Nonetheless, they are also very crucial in enterprise domain to access documents from various information sources. Since traditional search systems index the documents mainly by looking at the frequency of the occurring words in these documents, they are barely able to support natural language search, but rather keyword search. It seems that keyword based search will not be sufficient for enterprise data which is growing extremely fast. Thus, enterprise search becomes increasingly critical in corporate domain. In this report, we present an overview of the state-of-the-art technologies in literature for three main purposes: i) to increase the retrieval performance of a search engine, ii) to deploy a search platform to a cloud environment, and iii) to select the best terms in expanding queries for achieving even a higher retrieval performance as well as to provide good query suggestions to its users for a better user experience.

Airports have been constantly evolving and adopting digital technologies to improve operational efficiency, enhance passenger experience, generate ancillary revenues and boost capacity from existing infrastructure. The COVID-19 pandemic has also challenged airports and aviation stakeholders alike to adapt and manage new operational challenges such as facilitating a contactless travel experience and ensuring business continuity. Digitalisation using Industry 4.0 technologies offers opportunities for airports to address short-term challenges associated with the COVID-19 pandemic while also preparing for future long-term challenges that ensue the crisis. Through a systematic literature review of 102 relevant articles, we discuss the current state of adoption of Industry 4.0 technologies in airports, the associated challenges as well as future research directions. The results of this review suggest that the implementation of Industry 4.0 technologies is slowly gaining traction within the airport environment, and shall continue to remain relevant in the digital transformation journeys in developing future airports.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Conversational Machine Comprehension (CMC) is a research track in conversational AI which expects the machine to understand an open-domain text and thereafter engage in a multi-turn conversation to answer questions related to the text. While most of the research in Machine Reading Comprehension (MRC) revolves around single-turn question answering, multi-turn CMC has recently gained prominence, thanks to the advancement in natural language understanding via neural language models like BERT and the introduction of large-scale conversational datasets like CoQA and QuAC. The rise in interest has, however, led to a flurry of concurrent publications, each with a different yet structurally similar modeling approach and an inconsistent view of the surrounding literature. With the volume of model submissions to conversational datasets increasing every year, there exists a need to consolidate the scattered knowledge in this domain to streamline future research. This literature review, therefore, is a first-of-its-kind attempt at providing a holistic overview of CMC, with an emphasis on the common trends across recently published models, specifically in their approach to tackling conversational history. It focuses on synthesizing a generic framework for CMC models, rather than describing the models individually. The review is intended to serve as a compendium for future researchers in this domain.

Commonsense knowledge plays an important role when we read. The performance of BERT on SQuAD dataset shows that the accuracy of BERT can be better than human users. However, it does not mean that computers can surpass the human being in reading comprehension. CommonsenseQA is a large-scale dataset which is designed based on commonsense knowledge. BERT only achieved an accuracy of 55.9% on it. The result shows that computers cannot apply commonsense knowledge like human beings to answer questions. Comprehension Ability Test (CAT) divided the reading comprehension ability at four levels. We can achieve human like comprehension ability level by level. BERT has performed well at level 1 which does not require common knowledge. In this research, we propose a system which aims to allow computers to read articles and answer related questions with commonsense knowledge like a human being for CAT level 2. This system consists of three parts. Firstly, we built a commonsense knowledge graph; and then automatically constructed the commonsense knowledge question dataset according to it. Finally, BERT is combined with the commonsense knowledge to achieve the reading comprehension ability at CAT level 2. Experiments show that it can pass the CAT as long as the required common knowledge is included in the knowledge base.

Visual question answering (VQA) demands simultaneous comprehension of both the image visual content and natural language questions. In some cases, the reasoning needs the help of common sense or general knowledge which usually appear in the form of text. Current methods jointly embed both the visual information and the textual feature into the same space. However, how to model the complex interactions between the two different modalities is not an easy task. In contrast to struggling on multimodal feature fusion, in this paper, we propose to unify all the input information by natural language so as to convert VQA into a machine reading comprehension problem. With this transformation, our method not only can tackle VQA datasets that focus on observation based questions, but can also be naturally extended to handle knowledge-based VQA which requires to explore large-scale external knowledge base. It is a step towards being able to exploit large volumes of text and natural language processing techniques to address VQA problem. Two types of models are proposed to deal with open-ended VQA and multiple-choice VQA respectively. We evaluate our models on three VQA benchmarks. The comparable performance with the state-of-the-art demonstrates the effectiveness of the proposed method.

Machine reading comprehension with unanswerable questions aims to abstain from answering when no answer can be inferred. In addition to extract answers, previous works usually predict an additional "no-answer" probability to detect unanswerable cases. However, they fail to validate the answerability of the question by verifying the legitimacy of the predicted answer. To address this problem, we propose a novel read-then-verify system, which not only utilizes a neural reader to extract candidate answers and produce no-answer probabilities, but also leverages an answer verifier to decide whether the predicted answer is entailed by the input snippets. Moreover, we introduce two auxiliary losses to help the reader better handle answer extraction as well as no-answer detection, and investigate three different architectures for the answer verifier. Our experiments on the SQuAD 2.0 dataset show that our system achieves a score of 74.2 F1 on the test set, achieving state-of-the-art results at the time of submission (Aug. 28th, 2018).

Answering complex questions is a time-consuming activity for humans that requires reasoning and integration of information. Recent work on reading comprehension made headway in answering simple questions, but tackling complex questions is still an ongoing research challenge. Conversely, semantic parsers have been successful at handling compositionality, but only when the information resides in a target knowledge-base. In this paper, we present a novel framework for answering broad and complex questions, assuming answering simple questions is possible using a search engine and a reading comprehension model. We propose to decompose complex questions into a sequence of simple questions, and compute the final answer from the sequence of answers. To illustrate the viability of our approach, we create a new dataset of complex questions, ComplexWebQuestions, and present a model that decomposes questions and interacts with the web to compute an answer. We empirically demonstrate that question decomposition improves performance from 20.8 precision@1 to 27.5 precision@1 on this new dataset.

北京阿比特科技有限公司