This paper addresses the often overlooked issue of fairness in the autonomous driving domain, particularly in vision-based perception and prediction systems, which play a pivotal role in the overall functioning of Autonomous Vehicles (AVs). We focus our analysis on biases present in some of the most commonly used visual datasets for training person and vehicle detection systems. We introduce an annotation methodology and a specialised annotation tool, both designed to annotate protected attributes of agents in visual datasets. We validate our methodology through an inter-rater agreement analysis and provide the distribution of attributes across all datasets. These include annotations for the attributes age, sex, skin tone, group, and means of transport for more than 90K people, as well as vehicle type, colour, and car type for over 50K vehicles. Generally, diversity is very low for most attributes, with some groups, such as children, wheelchair users, or personal mobility vehicle users, being extremely underrepresented in the analysed datasets. The study contributes significantly to efforts to consider fairness in the evaluation of perception and prediction systems for AVs. This paper follows reproducibility principles. The annotation tool, scripts and the annotated attributes can be accessed publicly at //github.com/ec-jrc/humaint_annotator.
This paper describes continuous-space methodologies to estimate the collision probability, Euclidean distance and gradient between an ellipsoidal robot model and an environment surface modeled as a set of Gaussian distributions. Continuous-space collision probability estimation is critical for uncertainty-aware motion planning. Most collision detection and avoidance approaches assume the robot is modeled as a sphere, but ellipsoidal representations provide tighter approximations and enable navigation in cluttered and narrow spaces. State-of-the-art methods derive the Euclidean distance and gradient by processing raw point clouds, which is computationally expensive for large workspaces. Recent advances in Gaussian surface modeling (e.g. mixture models, splatting) enable compressed and high-fidelity surface representations. Few methods exist to estimate continuous-space occupancy from such models. They require Gaussians to model free space and are unable to estimate the collision probability, Euclidean distance and gradient for an ellipsoidal robot. The proposed methods bridge this gap by extending prior work in ellipsoid-to-ellipsoid Euclidean distance and collision probability estimation to Gaussian surface models. A geometric blending approach is also proposed to improve collision probability estimation. The approaches are evaluated with numerical 2D and 3D experiments using real-world point cloud data.
This study investigates the potential of using smartwatches with built-in microphone sensors for monitoring coughs and detecting various cough types. We conducted a study involving 32 participants and collected 9 hours of audio data in a controlled manner. Afterward, we processed this data using a structured approach, resulting in 223 positive cough samples. We further improved the dataset through augmentation techniques and employed a specialized 1D CNN model. This model achieved an impressive accuracy rate of 98.49% while non-walking and 98.2% while walking, showing smartwatches can detect cough. Moreover, our research successfully identified four distinct types of coughs using clustering techniques.
The rapid advancement of natural language processing, information retrieval (IR), computer vision, and other technologies has presented significant challenges in evaluating the performance of these systems. One of the main challenges is the scarcity of human-labeled data, which hinders the fair and accurate assessment of these systems. In this work, we specifically focus on evaluating IR systems with sparse labels, borrowing from recent research on evaluating computer vision tasks. taking inspiration from the success of using Fr\'echet Inception Distance (FID) in assessing text-to-image generation systems. We propose leveraging the Fr\'echet Distance to measure the distance between the distributions of relevant judged items and retrieved results. Our experimental results on MS MARCO V1 dataset and TREC Deep Learning Tracks query sets demonstrate the effectiveness of the Fr\'echet Distance as a metric for evaluating IR systems, particularly in settings where a few labels are available. This approach contributes to the advancement of evaluation methodologies in real-world scenarios such as the assessment of generative IR systems.
This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional considerations of communicating in natural language, its presentation and evaluating understandability are necessary. We identify the challenges in communication model performance, confidence, reasoning and unknown knowns using natural language in the context of risk prediction. We propose a design aimed at addressing these challenges, focusing on the specific application of in-vitro fertilisation outcome prediction.
This paper investigates the secure resource allocation for a downlink integrated sensing and communication system with multiple legal users and potential eavesdroppers. In the considered model, the base station (BS) simultaneously transmits sensing and communication signals through beamforming design, where the sensing signals can be viewed as artificial noise to enhance the security of communication signals. To further enhance the security in the semantic layer, the semantic information is extracted from the original information before transmission. The user side can only successfully recover the received information with the help of the knowledge base shared with the BS, which is stored in advance. Our aim is to maximize the sum semantic secrecy rate of all users while maintaining the minimum quality of service for each user and guaranteeing overall sensing performance. To solve this sum semantic secrecy rate maximization problem, an iterative algorithm is proposed using the alternating optimization method. The simulation results demonstrate the superiority of the proposed algorithm in terms of secure semantic communication and reliable detection.
Recent approaches to automatically detect the speaker of an utterance of direct speech often disregard general information about characters in favor of local information found in the context, such as surrounding mentions of entities. In this work, we explore stylistic representations of characters built by encoding their quotes with off-the-shelf pretrained Authorship Verification models in a large corpus of English novels (the Project Dialogism Novel Corpus). Results suggest that the combination of stylistic and topical information captured in some of these models accurately distinguish characters among each other, but does not necessarily improve over semantic-only models when attributing quotes. However, these results vary across novels and more investigation of stylometric models particularly tailored for literary texts and the study of characters should be conducted.
This paper delves into the degradability of quantum channels, with a specific focus on high-dimensional extensions of qubit depolarizing channels in low-noise regimes. We build upon the foundation of $\eta$-approximate degradable channels, as established by Sutter et al. and Leditzky et al., to introduce and examine the Modified Landau-Streater (MLS) channels. These channels expand upon the qubit depolarizing and the recently proposed modified Werner-Holevo channels by Roofeh and Karimipour, extending them to higher-dimensional Hilbert spaces (with dimension $d=2j+1$, where $j$ are positive half-integers). Our investigation centers on their conformity to the $O(\varepsilon^2)$ degradability pattern, aligning with and extending Leditzky et al.'s findings in the $d=2$ case. By replacing the SU($2$) generators with SU($d$) in our treatment, we may explore the potential inclusion of generalized Gell-Mann matrices in future research. Our results enhance the understanding of super-additivity in quantum channels within the low-noise regime and lay the groundwork for future explorations into conditions and structures that could lead to $O(\varepsilon^2)$ degradability across a broader spectrum of quantum channels.
We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.