Cellular-connected unmanned aerial vehicle (UAV) has attracted a surge of research interest in both academia and industry. To support aerial user equipment (UEs) in the existing cellular networks, one promising approach is to assign a portion of the system bandwidth exclusively to the UAV-UEs. This is especially favorable for use cases where a large number of UAV-UEs are exploited, e.g., for package delivery close to a warehouse. Although the nearly line-of-sight (LoS) channels can result in higher powers received, UAVs can in turn cause severe interference to each other in the same frequency band. In this contribution, we focus on the uplink communications of massive cellular-connected UAVs. Different power allocation algorithms are proposed to either maximize the minimal spectrum efficiency (SE) or maximize the overall SE to cope with severe interference based on the successive convex approximation (SCA) principle. One of the challenges is that a UAV can affect a large area meaning that many more UAV-UEs must be considered in the optimization problem, which is essentially different from that for terrestrial UEs. The necessity of single-carrier uplink transmission further complicates the problem. Nevertheless, we find that the special property of large coherent bandwidths and coherent times of the propagation channels can be leveraged. The performances of the proposed algorithms are evaluated via extensive simulations in the full-buffer transmission mode and bursty-traffic mode. Results show that the proposed algorithms can effectively enhance the uplink SEs. This work can be considered the first attempt to deal with the interference among massive cellular-connected UAV-UEs with optimized power allocations.
The cellular network coexisting with device-to-device (D2D) communications has been studied extensively. Reconfigurable intelligent surface (RIS) and non-orthogonal multiple access (NOMA) are promising technologies for the evolution of 5G, 6G and beyond. Besides, sparse code multiple access (SCMA) is considered suitable for next-generation wireless network in code-domain NOMA. In this paper, we consider the RIS-aided uplink SCMA cellular network simultaneously with D2D users. We formulate the optimization problem which aims to maximize the cellular sum-rate by jointly designing D2D users resource block (RB) association, the transmitted power for both cellular users and D2D users, and the phase shifts at the RIS. The power limitation and users communication requirements are considered. The problem is non-convex, and it is challenging to solve it directly. To handle this optimization problem, we propose an efficient iterative algorithm based on block coordinate descent (BCD) method. The original problem is decoupled into three subproblems to solve separately. Simulation results demonstrate that the proposed scheme can significantly improve the sum-rate performance over various schemes.
In recent years, with the explosive growth of data traffic, communication base stations (BSs) need to serve more and more users. Offloading traffic from BSs has become an efficient way to reduce the burden on BSs. Device-to-Device (D2D) communications have emerged to improve spectrum utilization by reusing the frequency spectrum of the cellular frequency band. In the general environment, Heterogeneous Cellular Networks (HCNs) including millimeter wave (mm-wave) have appeared. Since the D2D link allows to share of spectrum resources with the cellular user, it will bring potential interference to the cellular user. Fortunately, an emerging technology called Reconfigurable Intelligent Surface (RIS) can mitigate the severe interference caused by D2D links by shaping the incident beam and improving the multipath phase shift. In this paper, we study the resource allocation scheme to maximize the system sum rate, in the RISassisted single-cell heterogeneous D2D communication scenario. To solve the Block Coordinate Descent (BCD) problem, the problem of maximizing the sum rate is decomposed into three sub-problems. The resource allocation sub-problem is solved by a coalitional game method based on the game theory. The power allocation problem of the coalition converts the concave function into a convex optimization by mathematical transformation. The problem is solved by the gradient descent method. The local search method is adopted to find the optimum for the phase conversion problem. Then iterate until the difference of sum rate is less than the threshold. The simulation results show that the designed algorithm is superior to other benchmark schemes in the literature.
Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.
This paper presents a succinct review of attempts in the literature to use game theory to model decision making scenarios relevant to defence applications. Game theory has been proven as a very effective tool in modelling decision making processes of intelligent agents, entities, and players. It has been used to model scenarios from diverse fields such as economics, evolutionary biology, and computer science. In defence applications, there is often a need to model and predict actions of hostile actors, and players who try to evade or out-smart each other. Modelling how the actions of competitive players shape the decision making of each other is the forte of game theory. In past decades, there have been several studies which applied different branches of game theory to model a range of defence-related scenarios. This paper provides a structured review of such attempts, and classifies existing literature in terms of the kind of warfare modelled, the types of game used, and the players involved. The presented analysis provides a concise summary about the state-of-the-art with regards to the use of game theory in defence applications, and highlights the benefits and limitations of game theory in the considered scenarios.
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications. With the growing use of unmanned aerial systems (UASs), MOT methods for aerial surveillance is in high demand. Application of MOT in UAS presents specific challenges such as moving sensor, changing zoom levels, dynamic background, illumination changes, obscurations and small objects. In this work, we present a robust object tracking architecture aimed to accommodate for the noise in real-time situations. We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space. DeepEKF utilizes a learned image embedding along with an attention mechanism trained to weight the importance of areas in an image to predict future states. For the visual scoring, we experiment with different similarity measures to calculate distance based on entity appearances, including a convolutional neural network (CNN) encoder, pre-trained using Siamese networks. In initial evaluation experiments, we show that our method, combining scoring structure of the kinematic and visual models within a MHT framework, has improved performance especially in edge cases where entity motion is unpredictable, or the data presents frames with significant gaps.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.