亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel diffusion model called observation-guided diffusion probabilistic model (OGDM), which effectively addresses the trade-off between quality control and fast sampling. Our approach reestablishes the training objective by integrating the guidance of the observation process with the Markov chain in a principled way. This is achieved by introducing an additional loss term derived from the observation based on the conditional discriminator on noise level, which employs Bernoulli distribution indicating whether its input lies on the (noisy) real manifold or not. This strategy allows us to optimize the more accurate negative log-likelihood induced in the inference stage especially when the number of function evaluations is limited. The proposed training method is also advantageous even when incorporated only into the fine-tuning process, and it is compatible with various fast inference strategies since our method yields better denoising networks using the exactly same inference procedure without incurring extra computational cost. We demonstrate the effectiveness of the proposed training algorithm using diverse inference methods on strong diffusion model baselines.

相關內容

Situated visualization presents data alongside their source context (physical referent). While environmental factors influence memory recall (known as Context-Dependent Memory or CDM), how physical context affects cognition in real-world tasks such as working with visualizations in situated contexts is unclear. This study explores the design space of information memorability in situated visualization through the lens of CDM. We investigate the presence of physical referents for creating contextual cues in desktop and Virtual Reality (VR) environments. Across three studies (n=144), we observe a trend suggesting a CDM effect due to contextual referent is more apparent in VR. Overall, we did not find statistically significant evidence of a CDM effect due to the presence of a referent. However, we did find a significant CDM effect for lighting conditions. This suggests that representing the entire environment, rather than the physical objects alone, may be necessary to provide sufficiently strong contextual memory cues.

We present a novel algorithm for implementing Owen-scrambling, combining the generation and distribution of the scrambling bits in a single self-contained compact process. We employ a context-free grammar to build a binary tree of symbols, and equip each symbol with a scrambling code that affects all descendant nodes. We nominate the grammar of adaptive regular tiles (ART) derived from the repetition-avoiding Thue-Morse word, and we discuss its potential advantages and shortcomings. Our algorithm has many advantages, including random access to samples, fixed time complexity, GPU friendliness, and scalability to any memory budget. Further, it provides two unique features over known methods: it admits optimization, and it is invertible, enabling screen-space scrambling of the high-dimensional Sobol sampler.

Imitation learning addresses the challenge of learning by observing an expert's demonstrations without access to reward signals from environments. Most existing imitation learning methods that do not require interacting with environments either model the expert distribution as the conditional probability p(a|s) (e.g., behavioral cloning, BC) or the joint probability p(s, a). Despite its simplicity, modeling the conditional probability with BC usually struggles with generalization. While modeling the joint probability can lead to improved generalization performance, the inference procedure is often time-consuming and the model can suffer from manifold overfitting. This work proposes an imitation learning framework that benefits from modeling both the conditional and joint probability of the expert distribution. Our proposed diffusion model-augmented behavioral cloning (DBC) employs a diffusion model trained to model expert behaviors and learns a policy to optimize both the BC loss (conditional) and our proposed diffusion model loss (joint). DBC outperforms baselines in various continuous control tasks in navigation, robot arm manipulation, dexterous manipulation, and locomotion. We design additional experiments to verify the limitations of modeling either the conditional probability or the joint probability of the expert distribution as well as compare different generative models. Ablation studies justify the effectiveness of our design choices.

Kernel two-sample tests have been widely used for multivariate data to test equality of distributions. However, existing tests based on mapping distributions into a reproducing kernel Hilbert space mainly target specific alternatives and do not work well for some scenarios when the dimension of the data is moderate to high due to the curse of dimensionality. We propose a new test statistic that makes use of a common pattern under moderate and high dimensions and achieves substantial power improvements over existing kernel two-sample tests for a wide range of alternatives. We also propose alternative testing procedures that maintain high power with low computational cost, offering easy off-the-shelf tools for large datasets. The new approaches are compared to other state-of-the-art tests under various settings and show good performance. We showcase the new approaches through two applications: The comparison of musks and non-musks using the shape of molecules, and the comparison of taxi trips starting from John F. Kennedy airport in consecutive months. All proposed methods are implemented in an R package kerTests.

We use empirical Bayes (EB) to mine for out-of-sample returns among 73,108 long-short strategies constructed from accounting ratios, past returns, and ticker symbols. EB predicts returns are concentrated in accounting and past return strategies, small stocks, and pre-2004 samples. The cross-section of out-of-sample return lines up closely with EB predictions. Data-mined portfolios have mean returns comparable with published portfolios, but the data-mined returns are arguably free of data mining bias. In contrast, controlling for multiple testing following Harvey, Liu, and Zhu (2016) misses the vast majority of returns. This "high-throughput asset pricing" provides an evidence-based solution for data mining bias.

We study the edge-colouring problem, and give efficient algorithms where the number of colours is parameterised by the graph's arboricity, $\alpha$. In a dynamic graph, subject to insertions and deletions, we give a deterministic algorithm that updates a proper $\Delta + O(\alpha)$ edge~colouring in $\operatorname{poly}(\log n)$ amortised time. Our algorithm is fully adaptive to the current value of the maximum degree and arboricity. In this fully-dynamic setting, the state-of-the-art edge-colouring algorithms are either a randomised algorithm using $(1 + \varepsilon)\Delta$ colours in $\operatorname{poly}(\log n, \epsilon^{-1})$ time per update, or the naive greedy algorithm which is a deterministic $2\Delta -1$ edge colouring with $\log(\Delta)$ update time. Compared to the $(1+\varepsilon)\Delta$ algorithm, our algorithm is deterministic and asymptotically faster, and when $\alpha$ is sufficiently small compared to $\Delta$, it even uses fewer colours. In particular, ours is the first $\Delta+O(1)$ edge-colouring algorithm for dynamic forests, and dynamic planar graphs, with polylogarithmic update time. Additionally, in the static setting, we show that we can find a proper edge colouring with $\max\{deg(u), deg(v)\} + 2\alpha$ colours in $O(m\log n)$ time. This time bound matches that of the greedy algorithm that computes a $2\Delta-1$ colouring of the graph's edges, and improves the number of colours when $\alpha$ is sufficiently small compared to $\Delta$.

There is a growing interest in enhancing compiler optimizations with ML models, yet interactions between compilers and ML frameworks remain challenging. Some optimizations require tightly coupled models and compiler internals,raising issues with modularity, performance and framework independence. Practical deployment and transparency for the end-user are also important concerns. We propose ML-Compiler-Bridge to enable ML model development within a traditional Python framework while making end-to-end integration with an optimizing compiler possible and efficient. We evaluate it on both research and production use cases, for training and inference, over several optimization problems, multiple compilers and its versions, and gym infrastructures.

We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode. We show results on eight datasets, all of which demonstrate our method successfully aligns complex data and discovers dense correspondences. GANgealing significantly outperforms past self-supervised correspondence algorithms and performs on-par with (and sometimes exceeds) state-of-the-art supervised correspondence algorithms on several datasets -- without making use of any correspondence supervision or data augmentation and despite being trained exclusively on GAN-generated data. For precise correspondence, we improve upon state-of-the-art supervised methods by as much as $3\times$. We show applications of our method for augmented reality, image editing and automated pre-processing of image datasets for downstream GAN training.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

北京阿比特科技有限公司