亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Phase-coded imaging is a computational imaging method designed to tackle tasks such as passive depth estimation and extended depth of field (EDOF) using depth cues inserted during image capture. Most of the current deep learning-based methods for depth estimation or all-in-focus imaging require a training dataset with high-quality depth maps and an optimal focus point at infinity for all-in-focus images. Such datasets are difficult to create, usually synthetic, and require external graphic programs. We propose a new method named "Deep Phase Coded Image Prior" (DPCIP) for jointly recovering the depth map and all-in-focus image from a coded-phase image using solely the captured image and the optical information of the imaging system. Our approach does not depend on any specific dataset and surpasses prior supervised techniques utilizing the same imaging system. This improvement is achieved through the utilization of a problem formulation based on implicit neural representation (INR) and deep image prior (DIP). Due to our zero-shot method, we overcome the barrier of acquiring accurate ground-truth data of depth maps and all-in-focus images for each new phase-coded system introduced. This allows focusing mainly on developing the imaging system, and not on ground-truth data collection.

相關內容

We devise achievable encoding schemes for distributed source compression for computing inner products, symmetric matrix products, and more generally, square matrix products, which are a class of nonlinear transformations. To that end, our approach relies on devising nonlinear mappings of distributed sources, which are then followed by the structured linear encoding scheme, introduced by K\"orner and Marton. For different computation scenarios, we contrast our findings on the achievable sum rate with the state of the art to demonstrate the possible savings in compression rate. When the sources have special correlation structures, it is possible to achieve unbounded gains, as demonstrated by the analysis and numerical simulations.

The distributed computing literature considers multiple options for modeling communication. Most simply, communication is categorized as either synchronous or asynchronous. Synchronous communication assumes that messages get delivered within a publicly known timeframe and that parties' clocks are synchronized. Asynchronous communication, on the other hand, only assumes that messages get delivered eventually. A more nuanced approach, or a middle ground between the two extremes, is given by the partially synchronous model, which is arguably the most realistic option. This model comes in two commonly considered flavors: (i) The Global Stabilization Time (GST) model: after an (unknown) amount of time, the network becomes synchronous. This captures scenarios where network issues are transient. (ii) The Unknown Latency (UL) model: the network is, in fact, synchronous, but the message delay bound is unknown. This work formally establishes that any time-agnostic property that can be achieved by a protocol in the UL model can also be achieved by a (possibly different) protocol in the GST model. By time-agnostic, we mean properties that can depend on the order in which events happen but not on time as measured by the parties. Most properties considered in distributed computing are time-agnostic. The converse was already known, even without the time-agnostic requirement, so our result shows that the two network conditions are, under one sensible assumption, equally demanding.

Information pooling has been extensively formalised across various logical frameworks in distributed systems, characterized by diverse information-sharing patterns. These approaches generally adopt an intersection perspective, aggregating all possible information, regardless of whether it is known or unknown to the agents. In contrast, this work adopts a unique stance, emphasising that sharing knowledge means distributing what is known, rather than what remains uncertain. This paper introduces new modal logics for knowledge pooling and sharing, ranging from a novel language of knowledge pooling to a dynamic mechanism for knowledge sharing. It also outlines their axiomatizations and discusses a potential framework for permissible knowledge pooling.

Most dataset distillation methods struggle to accommodate large-scale datasets due to their substantial computational and memory requirements. In this paper, we present a curriculum-based dataset distillation framework designed to harmonize scalability with efficiency. This framework strategically distills synthetic images, adhering to a curriculum that transitions from simple to complex. By incorporating curriculum evaluation, we address the issue of previous methods generating images that tend to be homogeneous and simplistic, doing so at a manageable computational cost. Furthermore, we introduce adversarial optimization towards synthetic images to further improve their representativeness and safeguard against their overfitting to the neural network involved in distilling. This enhances the generalization capability of the distilled images across various neural network architectures and also increases their robustness to noise. Extensive experiments demonstrate that our framework sets new benchmarks in large-scale dataset distillation, achieving substantial improvements of 11.1\% on Tiny-ImageNet, 9.0\% on ImageNet-1K, and 7.3\% on ImageNet-21K. The source code will be released to the community.

Decision diagrams (DDs) are powerful tools to represent effectively propositional formulas, which are largely used in many domains, in particular in formal verification and in knowledge compilation. Some forms of DDs (e.g., OBDDs, SDDs) are canonical, that is, (under given conditions on the atom list) they univocally represent equivalence classes of formulas. Given the limited expressiveness of propositional logic, a few attempts to leverage DDs to SMT level have been presented in the literature. Unfortunately, these techniques still suffer from some limitations: most procedures are theory-specific; some produce theory DDs (T-DDs) which do not univocally represent T-valid formulas or T-inconsistent formulas; none of these techniques provably produces theory-canonical T-DDs, which (under given conditions on the T-atom list) univocally represent T-equivalence classes of formulas. Also, these procedures are not easy to implement, and very few implementations are actually available. In this paper, we present a novel very-general technique to leverage DDs to SMT level, which has several advantages: it is very easy to implement on top of an AllSMT solver and a DD package, which are used as blackboxes; it works for every form of DDs and every theory, or combination thereof, supported by the AllSMT solver; it produces theory-canonical T-DDs if the propositional DD is canonical. We have implemented a prototype tool for both T-OBDDs and T-SDDs on top of OBDD and SDD packages and the MathSAT SMT solver. Some preliminary empirical evaluation supports the effectiveness of the approach.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司