亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The proliferation of artificial intelligence (AI) in radiology has shed light on the risk of deep learning (DL) models exacerbating clinical biases towards vulnerable patient populations. While prior literature has focused on quantifying biases exhibited by trained DL models, demographically targeted adversarial bias attacks on DL models and its implication in the clinical environment remains an underexplored field of research in medical imaging. In this work, we demonstrate that demographically targeted label poisoning attacks can introduce undetectable underdiagnosis bias in DL models. Our results across multiple performance metrics and demographic groups like sex, age, and their intersectional subgroups show that adversarial bias attacks demonstrate high-selectivity for bias in the targeted group by degrading group model performance without impacting overall model performance. Furthermore, our results indicate that adversarial bias attacks result in biased DL models that propagate prediction bias even when evaluated with external datasets.

相關內容

This survey presents an overview of methods for learning from video (LfV) in the context of reinforcement learning (RL) and robotics. We focus on methods capable of scaling to large internet video datasets and, in the process, extracting foundational knowledge about the world's dynamics and physical human behaviour. Such methods hold great promise for developing general-purpose robots. We open with an overview of fundamental concepts relevant to the LfV-for-robotics setting. This includes a discussion of the exciting benefits LfV methods can offer (e.g., improved generalization beyond the available robot data) and commentary on key LfV challenges (e.g., challenges related to missing information in video and LfV distribution shifts). Our literature review begins with an analysis of video foundation model techniques that can extract knowledge from large, heterogeneous video datasets. Next, we review methods that specifically leverage video data for robot learning. Here, we categorise work according to which RL knowledge modality benefits from the use of video data. We additionally highlight techniques for mitigating LfV challenges, including reviewing action representations that address the issue of missing action labels in video. Finally, we examine LfV datasets and benchmarks, before concluding the survey by discussing challenges and opportunities in LfV. Here, we advocate for scalable approaches that can leverage the full range of available data and that target the key benefits of LfV. Overall, we hope this survey will serve as a comprehensive reference for the emerging field of LfV, catalysing further research in the area, and ultimately facilitating progress towards obtaining general-purpose robots.

The Internet of Things (IoT) has garnered significant interest in both research and industry due to its profound impact on human life. The rapid expansion of IoT technology has ushered in smart healthcare, smart devices, smart cities, and smart grids. However, the security of IoT devices, particularly in healthcare, has become a major concern, with recent attacks revealing serious vulnerabilities. In IoT networks, where connected devices are susceptible to resource-constraint attacks, such as energy consumption attacks, security is paramount. This paper explores the impact of Distributed Denial of Service (DDoS) and Fake Access Points (F-APs) attacks on WiFi-enabled smart healthcare devices. Specifically, it investigates how these attacks can disrupt service on victim devices and Access Points (APs), focusing on device connectivity and energy consumption during attacks. Key findings include identifying the attack rates of DDoS attacks that disrupt services and quantifying the energy consumption impact of Energy Consumption Distributed Denial of Service (EC-DDoS) and F-APs attacks on smart healthcare devices. The study highlights communication protocols, attack rates, payload sizes, and port states of victim devices as critical factors influencing energy consumption. These insights provide a comprehensive understanding of IoT device vulnerabilities in smart healthcare environments and lay the groundwork for future defense strategies.

Data drifts pose a critical challenge in the lifecycle of machine learning (ML) models, affecting their performance and reliability. In response to this challenge, we present a microbenchmark study, called D3Bench, which evaluates the efficacy of open-source drift detection tools. D3Bench examines the capabilities of Evidently AI, NannyML, and Alibi-Detect, leveraging real-world data from two smart building use cases.We prioritize assessing the functional suitability of these tools to identify and analyze data drifts. Furthermore, we consider a comprehensive set of non-functional criteria, such as the integrability with ML pipelines, the adaptability to diverse data types, user-friendliness, computational efficiency, and resource demands. Our findings reveal that Evidently AI stands out for its general data drift detection, whereas NannyML excels at pinpointing the precise timing of shifts and evaluating their consequent effects on predictive accuracy.

Artificial intelligence (AI) and Machine learning (ML) are increasingly used in energy and engineering systems, but these models must be fair, unbiased, and explainable. It is critical to have confidence in AI's trustworthiness. ML techniques have been useful in predicting important parameters and in improving model performance. However, for these AI techniques to be useful for making decisions, they need to be audited, accounted for, and easy to understand. Therefore, the use of explainable AI (XAI) and interpretable machine learning (IML) is crucial for the accurate prediction of prognostics, such as remaining useful life (RUL), in a digital twin system, to make it intelligent while ensuring that the AI model is transparent in its decision-making processes and that the predictions it generates can be understood and trusted by users. By using AI that is explainable, interpretable, and trustworthy, intelligent digital twin systems can make more accurate predictions of RUL, leading to better maintenance and repair planning, and ultimately, improved system performance. The objective of this paper is to explain the ideas of XAI and IML and to justify the important role of AI/ML in the digital twin framework and components, which requires XAI to understand the prediction better. This paper explains the importance of XAI and IML in both local and global aspects to ensure the use of trustworthy AI/ML applications for RUL prediction. We used the RUL prediction for the XAI and IML studies and leveraged the integrated Python toolbox for interpretable machine learning~(PiML).

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.

Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.

北京阿比特科技有限公司