Accurate predictive models of the visual cortex neural response to natural visual stimuli remain a challenge in computational neuroscience. In this work, we introduce V1T, a novel Vision Transformer based architecture that learns a shared visual and behavioral representation across animals. We evaluate our model on two large datasets recorded from mouse primary visual cortex and outperform previous convolution-based models by more than 12.7% in prediction performance. Moreover, we show that the self-attention weights learned by the Transformer correlate with the population receptive fields. Our model thus sets a new benchmark for neural response prediction and can be used jointly with behavioral and neural recordings to reveal meaningful characteristic features of the visual cortex.
In the era of advanced artificial intelligence and human-computer interaction, identifying emotions in spoken language is paramount. This research explores the integration of deep learning techniques in speech emotion recognition, offering a comprehensive solution to the challenges associated with speaker diarization and emotion identification. It introduces a framework that combines a pre-existing speaker diarization pipeline and an emotion identification model built on a Convolutional Neural Network (CNN) to achieve higher precision. The proposed model was trained on data from five speech emotion datasets, namely, RAVDESS, CREMA-D, SAVEE, TESS, and Movie Clips, out of which the latter is a speech emotion dataset created specifically for this research. The features extracted from each sample include Mel Frequency Cepstral Coefficients (MFCC), Zero Crossing Rate (ZCR), Root Mean Square (RMS), and various data augmentation algorithms like pitch, noise, stretch, and shift. This feature extraction approach aims to enhance prediction accuracy while reducing computational complexity. The proposed model yields an unweighted accuracy of 63%, demonstrating remarkable efficiency in accurately identifying emotional states within speech signals.
Video instance segmentation, also known as multi-object tracking and segmentation, is an emerging computer vision research area introduced in 2019, aiming at detecting, segmenting, and tracking instances in videos simultaneously. By tackling the video instance segmentation tasks through effective analysis and utilization of visual information in videos, a range of computer vision-enabled applications (e.g., human action recognition, medical image processing, autonomous vehicle navigation, surveillance, etc) can be implemented. As deep-learning techniques take a dominant role in various computer vision areas, a plethora of deep-learning-based video instance segmentation schemes have been proposed. This survey offers a multifaceted view of deep-learning schemes for video instance segmentation, covering various architectural paradigms, along with comparisons of functional performance, model complexity, and computational overheads. In addition to the common architectural designs, auxiliary techniques for improving the performance of deep-learning models for video instance segmentation are compiled and discussed. Finally, we discuss a range of major challenges and directions for further investigations to help advance this promising research field.
We study design of black-box model extraction attacks that can send minimal number of queries from a publicly available dataset to a target ML model through a predictive API with an aim to create an informative and distributionally equivalent replica of the target. First, we define distributionally equivalent and Max-Information model extraction attacks, and reduce them into a variational optimisation problem. The attacker sequentially solves this optimisation problem to select the most informative queries that simultaneously maximise the entropy and reduce the mismatch between the target and the stolen models. This leads to an active sampling-based query selection algorithm, Marich, which is model-oblivious. Then, we evaluate Marich on different text and image data sets, and different models, including CNNs and BERT. Marich extracts models that achieve $\sim 60-95\%$ of true model's accuracy and uses $\sim 1,000 - 8,500$ queries from the publicly available datasets, which are different from the private training datasets. Models extracted by Marich yield prediction distributions, which are $\sim 2-4\times$ closer to the target's distribution in comparison to the existing active sampling-based attacks. The extracted models also lead to $84-96\%$ accuracy under membership inference attacks. Experimental results validate that Marich is query-efficient, and capable of performing task-accurate, high-fidelity, and informative model extraction.
Medical image fusion integrates the complementary diagnostic information of the source image modalities for improved visualization and analysis of underlying anomalies. Recently, deep learning-based models have excelled the conventional fusion methods by executing feature extraction, feature selection, and feature fusion tasks, simultaneously. However, most of the existing convolutional neural network (CNN) architectures use conventional pooling or strided convolutional strategies to downsample the feature maps. It causes the blurring or loss of important diagnostic information and edge details available in the source images and dilutes the efficacy of the feature extraction process. Therefore, this paper presents an end-to-end unsupervised fusion model for multimodal medical images based on an edge-preserving dense autoencoder network. In the proposed model, feature extraction is improved by using wavelet decomposition-based attention pooling of feature maps. This helps in preserving the fine edge detail information present in both the source images and enhances the visual perception of fused images. Further, the proposed model is trained on a variety of medical image pairs which helps in capturing the intensity distributions of the source images and preserves the diagnostic information effectively. Substantial experiments are conducted which demonstrate that the proposed method provides improved visual and quantitative results as compared to the other state-of-the-art fusion methods.
We propose a middleware solution designed to facilitate seamless integration of privacy using zero-knowledge proofs within various multi-chain protocols, encompassing domains such as DeFi, gaming, social networks, DAOs, e-commerce, and the metaverse. Our design achieves two divergent goals. zkFi aims to preserve consumer privacy while achieving regulation compliance through zero-knowledge proofs. These ends are simultaneously achievable. zkFi protocol is designed to function as a plug-and-play solution, offering developers the flexibility to handle transactional assets while abstracting away the complexities associated with zero-knowledge proofs. Notably, specific expertise in zero-knowledge proofs (ZKP) is optional, attributed to zkFi's modular approach and software development kit (SDK) availability.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this paper aims to provide a comprehensive survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research.
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.