Artificial Intelligence (AI) aims to elevate healthcare to a pinnacle by aiding clinical decision support. Overcoming the challenges related to the design of ethical AI will enable clinicians, physicians, healthcare professionals, and other stakeholders to use and trust AI in healthcare settings. This study attempts to identify the major ethical principles influencing the utility performance of AI at different technological levels such as data access, algorithms, and systems through a thematic analysis. We observed that justice, privacy, bias, lack of regulations, risks, and interpretability are the most important principles to consider for ethical AI. This data-driven study has analyzed secondary survey data from the Pew Research Center (2020) of 36 AI experts to categorize the top ethical principles of AI design. To resolve the ethical issues identified by the meta-analysis and domain experts, we propose a new utilitarian ethics-based theoretical framework for designing ethical AI for the healthcare domain.
Generative Large Language Models (LLMs) show potential in data analysis, yet their full capabilities remain uncharted. Our work explores the capabilities of LLMs for creating and refining visualizations via conversational interfaces. We used an LLM to conduct a re-analysis of a prior Wizard-of-Oz study examining the use of chatbots for conducting visual analysis. We surfaced the strengths and weaknesses of LLM-driven analytic chatbots, finding that they fell short in supporting progressive visualization refinements. From these findings, we developed AI Threads, a multi-threaded analytic chatbot that enables analysts to proactively manage conversational context and improve the efficacy of its outputs. We evaluate its usability through a crowdsourced study (n=40) and in-depth interviews with expert analysts (n=10). We further demonstrate the capabilities of AI Threads on a dataset outside the LLM's training corpus. Our findings show the potential of LLMs while also surfacing challenges and fruitful avenues for future research.
We study the problem of robustly estimating the mean or location parameter without moment assumptions. We show that for a large class of symmetric distributions, the same error as in the Gaussian setting can be achieved efficiently. The distributions we study include products of arbitrary symmetric one-dimensional distributions, such as product Cauchy distributions, as well as elliptical distributions. For product distributions and elliptical distributions with known scatter (covariance) matrix, we show that given an $\varepsilon$-corrupted sample, we can with probability at least $1-\delta$ estimate its location up to error $O(\varepsilon \sqrt{\log(1/\varepsilon)})$ using $\tfrac{d\log(d) + \log(1/\delta)}{\varepsilon^2 \log(1/\varepsilon)}$ samples. This result matches the best-known guarantees for the Gaussian distribution and known SQ lower bounds (up to the $\log(d)$ factor). For elliptical distributions with unknown scatter (covariance) matrix, we propose a sequence of efficient algorithms that approaches this optimal error. Specifically, for every $k \in \mathbb{N}$, we design an estimator using time and samples $\tilde{O}({d^k})$ achieving error $O(\varepsilon^{1-\frac{1}{2k}})$. This matches the error and running time guarantees when assuming certifiably bounded moments of order up to $k$. For unknown covariance, such error bounds of $o(\sqrt{\varepsilon})$ are not even known for (general) sub-Gaussian distributions. Our algorithms are based on a generalization of the well-known filtering technique. We show how this machinery can be combined with Huber-loss-based techniques to work with projections of the noise that behave more nicely than the initial noise. Moreover, we show how SoS proofs can be used to obtain algorithmic guarantees even for distributions without a first moment. We believe that this approach may find other applications in future works.
Although graph neural networks have achieved great success in the task of molecular property prediction in recent years, their generalization ability under out-of-distribution (OOD) settings is still under-explored. Different from existing methods that learn discriminative representations for prediction, we propose a generative model with semantic-components identifiability, named SCI. We demonstrate that the latent variables in this generative model can be explicitly identified into semantic-relevant (SR) and semantic-irrelevant (SI) components, which contributes to better OOD generalization by involving minimal change properties of causal mechanisms. Specifically, we first formulate the data generation process from the atom level to the molecular level, where the latent space is split into SI substructures, SR substructures, and SR atom variables. Sequentially, to reduce misidentification, we restrict the minimal changes of the SR atom variables and add a semantic latent substructure regularization to mitigate the variance of the SR substructure under augmented domain changes. Under mild assumptions, we prove the block-wise identifiability of the SR substructure and the comment-wise identifiability of SR atom variables. Experimental studies achieve state-of-the-art performance and show general improvement on 21 datasets in 3 mainstream benchmarks. Moreover, the visualization results of the proposed SCI method provide insightful case studies and explanations for the prediction results. The code is available at: //github.com/DMIRLAB-Group/SCI.
Deep learning models have shown promising predictive accuracy for time-series healthcare applications. However, ensuring the robustness of these models is vital for building trustworthy AI systems. Existing research predominantly focuses on robustness to synthetic adversarial examples, crafted by adding imperceptible perturbations to clean input data. However, these synthetic adversarial examples do not accurately reflect the most challenging real-world scenarios, especially in the context of healthcare data. Consequently, robustness to synthetic adversarial examples may not necessarily translate to robustness against naturally occurring adversarial examples, which is highly desirable for trustworthy AI. We propose a method to curate datasets comprised of natural adversarial examples to evaluate model robustness. The method relies on probabilistic labels obtained from automated weakly-supervised labeling that combines noisy and cheap-to-obtain labeling heuristics. Based on these labels, our method adversarially orders the input data and uses this ordering to construct a sequence of increasingly adversarial datasets. Our evaluation on six medical case studies and three non-medical case studies demonstrates the efficacy and statistical validity of our approach to generating naturally adversarial datasets
The recent years have been marked by extended research on adversarial attacks, especially on deep neural networks. With this work we intend on posing and investigating the question of whether the phenomenon might be more general in nature, that is, adversarial-style attacks outside classical classification tasks. Specifically, we investigate optimization problems as they constitute a fundamental part of modern AI research. To this end, we consider the base class of optimizers namely Linear Programs (LPs). On our initial attempt of a na\"ive mapping between the formalism of adversarial examples and LPs, we quickly identify the key ingredients missing for making sense of a reasonable notion of adversarial examples for LPs. Intriguingly, the formalism of Pearl's notion to causality allows for the right description of adversarial like examples for LPs. Characteristically, we show the direct influence of the Structural Causal Model (SCM) onto the subsequent LP optimization, which ultimately exposes a notion of confounding in LPs (inherited by said SCM) that allows for adversarial-style attacks. We provide both the general proof formally alongside existential proofs of such intriguing LP-parameterizations based on SCM for three combinatorial problems, namely Linear Assignment, Shortest Path and a real world problem of energy systems.
Training Generative Adversarial Networks (GANs) remains a challenging problem. The discriminator trains the generator by learning the distribution of real/generated data. However, the distribution of generated data changes throughout the training process, which is difficult for the discriminator to learn. In this paper, we propose a novel method for GANs from the viewpoint of online continual learning. We observe that the discriminator model, trained on historically generated data, often slows down its adaptation to the changes in the new arrival generated data, which accordingly decreases the quality of generated results. By treating the generated data in training as a stream, we propose to detect whether the discriminator slows down the learning of new knowledge in generated data. Therefore, we can explicitly enforce the discriminator to learn new knowledge fast. Particularly, we propose a new discriminator, which automatically detects its retardation and then dynamically masks its features, such that the discriminator can adaptively learn the temporally-vary distribution of generated data. Experimental results show our method outperforms the state-of-the-art approaches.
When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.
It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.
Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.