In the first part of this work, we develop a novel scheme for solving nonparametric regression problems. That is the approximation of possibly low regular and noised functions from the knowledge of their approximate values given at some random points. Our proposed scheme is based on the use of the pseudo-inverse of a random projection matrix, combined with some specific properties of the Jacobi polynomials system, as well as some properties of positive definite random matrices. This scheme has the advantages to be stable, robust, accurate and fairly fast in terms of execution time. In particular, we provide an $L_2$ as well as an $L_2-$risk errors of our proposed nonparametric regression estimator. Moreover and unlike most of the existing nonparametric regression estimators, no extra regularization step is required by our proposed estimator. Although, this estimator is initially designed to work with random sampling set of uni-variate i.i.d. random variables following a Beta distribution, we show that it is still works for a wide range of sampling distribution laws. Moreover, we briefly describe how our estimator can be adapted in order to handle the multivariate case of random sampling sets. In the second part of this work, we extend the random pseudo-inverse scheme technique to build a stable and accurate estimator for solving linear functional regression (LFR) problems. A dyadic decomposition approach is used to construct this last stable estimator for the LFR problem. Alaso, we give an $L_2-$risk error of our proposed LFR estimator. Finally, the performance of the two proposed estimators are illustrated by various numerical simulations. In particular, a real dataset is used to illustrate the performance of our nonparametric regression estimator.
We consider the conditional treatment effect for competing risks data in observational studies. While it is described as a constant difference between the hazard functions given the covariates, we do not assume specific functional forms for the covariates. We derive the efficient score for the treatment effect using modern semiparametric theory, as well as two doubly robust scores with respect to 1) the assumed propensity score for treatment and the censoring model, and 2) the outcome models for the competing risks. An important asymptotic result regarding the estimators is rate double robustness, in addition to the classical model double robustness. Rate double robustness enables the use of machine learning and nonparametric methods in order to estimate the nuisance parameters, while preserving the root-$n$ asymptotic normality of the estimators for inferential purposes. We study the performance of the estimators using simulation. The estimators are applied to the data from a cohort of Japanese men in Hawaii followed since 1960s in order to study the effect of mid-life drinking behavior on late life cognitive outcomes.
In this study, we develop an asymptotic theory of nonparametric regression for a locally stationary functional time series. First, we introduce the notion of a locally stationary functional time series (LSFTS) that takes values in a semi-metric space. Then, we propose a nonparametric model for LSFTS with a regression function that changes smoothly over time. We establish the uniform convergence rates of a class of kernel estimators, the Nadaraya-Watson (NW) estimator of the regression function, and a central limit theorem of the NW estimator.
We propose nonparametric estimators for the second-order central moments of spherical random fields within a functional data context. We consider a measurement framework where each field among an identically distributed collection of spherical random fields is sampled at a few random directions, possibly subject to measurement error. The collection of fields could be i.i.d. or serially dependent. Though similar setups have already been explored for random functions defined on the unit interval, the nonparametric estimators proposed in the literature often rely on local polynomials, which do not readily extend to the (product) spherical setting. We therefore formulate our estimation procedure as a variational problem involving a generalized Tikhonov regularization term. The latter favours smooth covariance/autocovariance functions, where the smoothness is specified by means of suitable Sobolev-like pseudo-differential operators. Using the machinery of reproducing kernel Hilbert spaces, we establish representer theorems that fully characterizing the form of our estimators. We determine their uniform rates of convergence as the number of fields diverges, both for the dense (increasing number of spatial samples) and sparse (bounded number of spatial samples) regimes. We moreover validate and demonstrate the practical feasibility of our estimation procedure in a simulation setting, assuming a fixed number of samples per field. Our numerical estimation procedure leverages the sparsity and second-order Kronecker structure of our setup to reduce the computational and memory requirements by approximately three orders of magnitude compared to a naive implementation would require.
We study the large sample properties of sparse M-estimators in the presence of pseudo-observations. Our framework covers a broad class of semi-parametric copula models, for which the marginal distributions are unknown and replaced by their empirical counterparts. It is well known that the latter modification significantly alters the limiting laws compared to usual M-estimation. We establish the consistency and the asymptotic normality of our sparse penalized M-estimator and we prove the asymptotic oracle property with pseudo-observations, including the case when the number of parameters is diverging. Our framework allows to manage copula based loss functions that are potentially unbounded. As additional results, we state the weak limit of multivariate rank statistics and the weak convergence of the empirical copula process indexed by such maps. We apply our inference method to copula vine models and copula regressions. The numerical results emphasize the relevance of this methodology in the context of model misspecifications.
We propose a new adaptive hypothesis test for polyhedral cone (e.g., monotonicity, convexity) and equality (e.g., parametric, semiparametric) restrictions on a structural function in a nonparametric instrumental variables (NPIV) model. Our test statistic is based on a modified leave-one-out sample analog of a quadratic distance between the restricted and unrestricted sieve NPIV estimators. We provide computationally simple, data-driven choices of sieve tuning parameters and adjusted chi-squared critical values. Our test adapts to the unknown smoothness of alternative functions in the presence of unknown degree of endogeneity and unknown strength of the instruments. It attains the adaptive minimax rate of testing in $L^2$. That is, the sum of its type I error uniformly over the composite null and its type II error uniformly over nonparametric alternative models cannot be improved by any other hypothesis test for NPIV models of unknown regularities. Data-driven confidence sets in $L^2$ are obtained by inverting the adaptive test. Simulations confirm that our adaptive test controls size and its finite-sample power greatly exceeds existing non-adaptive tests for monotonicity and parametric restrictions in NPIV models. Empirical applications to test for shape restrictions of differentiated products demand and of Engel curves are presented.
We introduce a nonparametric nonlinear VAR prewhitened long-run variance (LRV) estimator for the construction of standard errors robust to autocorrelation and heteroskedasticity that can be used for hypothesis testing in a variety of contexts including the linear regression model. Existing methods either are theoretically valid only under stationarity and have poor finite-sample properties under nonstationarity (i.e., fixed-b methods), or are theoretically valid under the null hypothesis but lead to tests that are not consistent under nonstationary alternative hypothesis (i.e., both fixed-b and traditional HAC estimators). The proposed estimator accounts explicitly for nonstationarity, unlike previous prewhitened procedures which are known to be unreliable, and leads to tests with accurate null rejection rates and good monotonic power. We also establish MSE bounds for LRV estimation that are sharper than previously established and use them to determine the data-dependent bandwidths.
Recent work has proposed stochastic Plackett-Luce (PL) ranking models as a robust choice for optimizing relevance and fairness metrics. Unlike their deterministic counterparts that require heuristic optimization algorithms, PL models are fully differentiable. Theoretically, they can be used to optimize ranking metrics via stochastic gradient descent. However, in practice, the computation of the gradient is infeasible because it requires one to iterate over all possible permutations of items. Consequently, actual applications rely on approximating the gradient via sampling techniques. In this paper, we introduce a novel algorithm: PL-Rank, that estimates the gradient of a PL ranking model w.r.t. both relevance and fairness metrics. Unlike existing approaches that are based on policy gradients, PL-Rank makes use of the specific structure of PL models and ranking metrics. Our experimental analysis shows that PL-Rank has a greater sample-efficiency and is computationally less costly than existing policy gradients, resulting in faster convergence at higher performance. PL-Rank further enables the industry to apply PL models for more relevant and fairer real-world ranking systems.
Neural waveform models such as the WaveNet are used in many recent text-to-speech systems, but the original WaveNet is quite slow in waveform generation because of its autoregressive (AR) structure. Although faster non-AR models were recently reported, they may be prohibitively complicated due to the use of a distilling training method and the blend of other disparate training criteria. This study proposes a non-AR neural source-filter waveform model that can be directly trained using spectrum-based training criteria and the stochastic gradient descent method. Given the input acoustic features, the proposed model first uses a source module to generate a sine-based excitation signal and then uses a filter module to transform the excitation signal into the output speech waveform. Our experiments demonstrated that the proposed model generated waveforms at least 100 times faster than the AR WaveNet and the quality of its synthetic speech is close to that of speech generated by the AR WaveNet. Ablation test results showed that both the sine-wave excitation signal and the spectrum-based training criteria were essential to the performance of the proposed model.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.