The research direction of identifying acoustic bio-markers of respiratory diseases has received renewed interest following the onset of COVID-19 pandemic. In this paper, we design an approach to COVID-19 diagnostic using crowd-sourced multi-modal data. The data resource, consisting of acoustic signals like cough, breathing, and speech signals, along with the data of symptoms, are recorded using a web-application over a period of ten months. We investigate the use of statistical descriptors of simple time-frequency features for acoustic signals and binary features for the presence of symptoms. Unlike previous works, we primarily focus on the application of simple linear classifiers like logistic regression and support vector machines for acoustic data while decision tree models are employed on the symptoms data. We show that a multi-modal integration of acoustics and symptoms classifiers achieves an area-under-curve (AUC) of 92.40, a significant improvement over any individual modality. Several ablation experiments are also provided which highlight the acoustic and symptom dimensions that are important for the task of COVID-19 diagnostics.
Modelling disease progression of iron deficiency anaemia (IDA) following oral iron supplement prescriptions is a prerequisite for evaluating the cost-effectiveness of oral iron supplements. Electronic health records (EHRs) from the Clinical Practice Research Datalink (CPRD) provide rich longitudinal data on IDA disease progression in patients registered with 663 General Practitioner (GP) practices in the UK, but they also create challenges in statistical analyses. First, the CPRD data are clustered at multi-levels (i.e., GP practices and patients), but their large volume makes it computationally difficult to implement estimation of standard random effects models for multi-level data. Second, observation times in the CPRD data are irregular and could be informative about the disease progression. For example, shorter/longer gap times between GP visits could be associated with deteriorating/improving IDA. Existing methods to address informative observation times are mostly based on complex joint models, which adds more computational burden. To tackle these challenges, we develop a computationally efficient approach to modelling disease progression with EHRs data while accounting for variability at multi-level clusters and informative observation times. We apply the proposed method to the CPRD data to investigate IDA improvement and treatment intolerance following oral iron prescriptions in primary care of the UK.
Deployment, operation and maintenance of large IT systems becomes increasingly complex and puts human experts under extreme stress when problems occur. Therefore, utilization of machine learning (ML) and artificial intelligence (AI) is applied on IT system operation and maintenance - summarized in the term AIOps. One specific direction aims at the recognition of re-occurring anomaly types to enable remediation automation. However, due to IT system specific properties, especially their frequent changes (e.g. software updates, reconfiguration or hardware modernization), recognition of reoccurring anomaly types is challenging. Current methods mainly assume a static dimensionality of provided data. We propose a method that is invariant to dimensionality changes of given data. Resource metric data such as CPU utilization, allocated memory and others are modelled as multivariate time series. The extraction of temporal and spatial features together with the subsequent anomaly classification is realized by utilizing TELESTO, our novel graph convolutional neural network (GCNN) architecture. The experimental evaluation is conducted in a real-world cloud testbed deployment that is hosting two applications. Classification results of injected anomalies on a cassandra database node show that TELESTO outperforms the alternative GCNNs and achieves an overall classification accuracy of 85.1%. Classification results for the other nodes show accuracy values between 85% and 60%.
Heart disease is the most common reason for human mortality that causes almost one-third of deaths throughout the world. Detecting the disease early increases the chances of survival of the patient and there are several ways a sign of heart disease can be detected early. This research proposes to convert cleansed and normalized heart sound into visual mel scale spectrograms and then using visual domain transfer learning approaches to automatically extract features and categorize between heart sounds. Some of the previous studies found that the spectrogram of various types of heart sounds is visually distinguishable to human eyes, which motivated this study to experiment on visual domain classification approaches for automated heart sound classification. It will use convolution neural network-based architectures i.e. ResNet, MobileNetV2, etc as the automated feature extractors from spectrograms. These well-accepted models in the image domain showed to learn generalized feature representations of cardiac sounds collected from different environments with varying amplitude and noise levels. Model evaluation criteria used were categorical accuracy, precision, recall, and AUROC as the chosen dataset is unbalanced. The proposed approach has been implemented on datasets A and B of the PASCAL heart sound collection and resulted in ~ 90% categorical accuracy and AUROC of ~0.97 for both sets.
The use of social media data, like Twitter, for biomedical research has been gradually increasing over the years. With the COVID-19 pandemic, researchers have turned to more nontraditional sources of clinical data to characterize the disease in near real-time, study the societal implications of interventions, as well as the sequelae that recovered COVID-19 cases present (Long-COVID). However, manually curated social media datasets are difficult to come by due to the expensive costs of manual annotation and the efforts needed to identify the correct texts. When datasets are available, they are usually very small and their annotations do not generalize well over time or to larger sets of documents. As part of the 2021 Biomedical Linked Annotation Hackathon, we release our dataset of over 120 million automatically annotated tweets for biomedical research purposes. Incorporating best practices, we identify tweets with potentially high clinical relevance. We evaluated our work by comparing several SpaCy-based annotation frameworks against a manually annotated gold-standard dataset. Selecting the best method to use for automatic annotation, we then annotated 120 million tweets and released them publicly for future downstream usage within the biomedical domain.
Enhancing the generalization capability of deep neural networks to unseen domains is crucial for safety-critical applications in the real world such as autonomous driving. To address this issue, this paper proposes a novel instance selective whitening loss to improve the robustness of the segmentation networks for unseen domains. Our approach disentangles the domain-specific style and domain-invariant content encoded in higher-order statistics (i.e., feature covariance) of the feature representations and selectively removes only the style information causing domain shift. As shown in Fig. 1, our method provides reasonable predictions for (a) low-illuminated, (b) rainy, and (c) unseen structures. These types of images are not included in the training dataset, where the baseline shows a significant performance drop, contrary to ours. Being simple yet effective, our approach improves the robustness of various backbone networks without additional computational cost. We conduct extensive experiments in urban-scene segmentation and show the superiority of our approach to existing work. Our code is available at //github.com/shachoi/RobustNet.
A key challenge of big data analytics is how to collect a large volume of (labeled) data. Crowdsourcing aims to address this challenge via aggregating and estimating high-quality data (e.g., sentiment label for text) from pervasive clients/users. Existing studies on crowdsourcing focus on designing new methods to improve the aggregated data quality from unreliable/noisy clients. However, the security aspects of such crowdsourcing systems remain under-explored to date. We aim to bridge this gap in this work. Specifically, we show that crowdsourcing is vulnerable to data poisoning attacks, in which malicious clients provide carefully crafted data to corrupt the aggregated data. We formulate our proposed data poisoning attacks as an optimization problem that maximizes the error of the aggregated data. Our evaluation results on one synthetic and two real-world benchmark datasets demonstrate that the proposed attacks can substantially increase the estimation errors of the aggregated data. We also propose two defenses to reduce the impact of malicious clients. Our empirical results show that the proposed defenses can substantially reduce the estimation errors of the data poisoning attacks.
The rapid advancements in machine learning, graphics processing technologies and availability of medical imaging data has led to a rapid increase in use of machine learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, brief mathematical description of 3D CNN and the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection, and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models, in general) and possible future trends in the field.
Person identification in the wild is very challenging due to great variation in poses, face quality, clothes, makeup and so on. Traditional research, such as face recognition, person re-identification, and speaker recognition, often focuses on a single modal of information, which is inadequate to handle all the situations in practice. Multi-modal person identification is a more promising way that we can jointly utilize face, head, body, audio features, and so on. In this paper, we introduce iQIYI-VID, the largest video dataset for multi-modal person identification. It is composed of 600K video clips of 5,000 celebrities. These video clips are extracted from 400K hours of online videos of various types, ranging from movies, variety shows, TV series, to news broadcasting. All video clips pass through a careful human annotation process, and the error rate of labels is lower than 0.2%. We evaluated the state-of-art models of face recognition, person re-identification, and speaker recognition on the iQIYI-VID dataset. Experimental results show that these models are still far from being perfect for task of person identification in the wild. We further demonstrate that a simple fusion of multi-modal features can improve person identification considerably. We have released the dataset online to promote multi-modal person identification research.
We investigate video classification via a two-stream convolutional neural network (CNN) design that directly ingests information extracted from compressed video bitstreams. Our approach begins with the observation that all modern video codecs divide the input frames into macroblocks (MBs). We demonstrate that selective access to MB motion vector (MV) information within compressed video bitstreams can also provide for selective, motion-adaptive, MB pixel decoding (a.k.a., MB texture decoding). This in turn allows for the derivation of spatio-temporal video activity regions at extremely high speed in comparison to conventional full-frame decoding followed by optical flow estimation. In order to evaluate the accuracy of a video classification framework based on such activity data, we independently train two CNN architectures on MB texture and MV correspondences and then fuse their scores to derive the final classification of each test video. Evaluation on two standard datasets shows that the proposed approach is competitive to the best two-stream video classification approaches found in the literature. At the same time: (i) a CPU-based realization of our MV extraction is over 977 times faster than GPU-based optical flow methods; (ii) selective decoding is up to 12 times faster than full-frame decoding; (iii) our proposed spatial and temporal CNNs perform inference at 5 to 49 times lower cloud computing cost than the fastest methods from the literature.
Scene text detection has been made great progress in recent years. The detection manners are evolving from axis-aligned rectangle to rotated rectangle and further to quadrangle. However, current datasets contain very little curve text, which can be widely observed in scene images such as signboard, product name and so on. To raise the concerns of reading curve text in the wild, in this paper, we construct a curve text dataset named CTW1500, which includes over 10k text annotations in 1,500 images (1000 for training and 500 for testing). Based on this dataset, we pioneering propose a polygon based curve text detector (CTD) which can directly detect curve text without empirical combination. Moreover, by seamlessly integrating the recurrent transverse and longitudinal offset connection (TLOC), the proposed method can be end-to-end trainable to learn the inherent connection among the position offsets. This allows the CTD to explore context information instead of predicting points independently, resulting in more smooth and accurate detection. We also propose two simple but effective post-processing methods named non-polygon suppress (NPS) and polygonal non-maximum suppression (PNMS) to further improve the detection accuracy. Furthermore, the proposed approach in this paper is designed in an universal manner, which can also be trained with rectangular or quadrilateral bounding boxes without extra efforts. Experimental results on CTW-1500 demonstrate our method with only a light backbone can outperform state-of-the-art methods with a large margin. By evaluating only in the curve or non-curve subset, the CTD + TLOC can still achieve the best results. Code is available at //github.com/Yuliang-Liu/Curve-Text-Detector.