亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The range of robot activities is expanding from industries with fixed environments to diverse and changing environments, such as nursing care support and daily life support. In particular, autonomous construction of robots that are personalized for each user and task is required. Therefore, we develop an actuator module that can be reconfigured to various link configurations, can carry heavy objects using a locking mechanism, and can be easily operated by human teaching using a releasing mechanism. Given multiple target coordinates, a modular robot configuration that satisfies these coordinates and minimizes the required torque is automatically generated by Tree-structured Parzen Estimator (TPE), a type of black-box optimization. Based on the obtained results, we show that the robot can be reconfigured to perform various functions such as moving monitors and lights, serving food, and so on.

相關內容

機(ji)(ji)器(qi)(qi)人(ren)(英語:Robot)包括一(yi)切模擬人(ren)類(lei)行為或(huo)思想與模擬其(qi)他生物的機(ji)(ji)械(如機(ji)(ji)器(qi)(qi)狗,機(ji)(ji)器(qi)(qi)貓等)。狹義上對機(ji)(ji)器(qi)(qi)人(ren)的定義還(huan)有很多分類(lei)法及爭議,有些電腦(nao)程(cheng)序甚(shen)至也被稱為機(ji)(ji)器(qi)(qi)人(ren)。在當代工業(ye)中,機(ji)(ji)器(qi)(qi)人(ren)指(zhi)能自動運行任(ren)務的人(ren)造(zao)機(ji)(ji)器(qi)(qi)設備(bei)(bei),用以取代或(huo)協助人(ren)類(lei)工作,一(yi)般會是機(ji)(ji)電設備(bei)(bei),由計算(suan)機(ji)(ji)程(cheng)序或(huo)是電子電路控制(zhi)。

知識薈萃

精(jing)品(pin)入門(men)和(he)進階教程、論文和(he)代碼整理(li)等

更多

查看相(xiang)關VIP內容(rong)、論文、資訊(xun)等

With the widespread application of causal inference, it is increasingly important to have tools which can test for the presence of causal effects in a diverse array of circumstances. In this vein we focus on the problem of testing for \emph{distributional} causal effects, where the treatment affects not just the mean, but also higher order moments of the distribution, as well as multidimensional or structured outcomes. We build upon a previously introduced framework, Counterfactual Mean Embeddings, for representing causal distributions within Reproducing Kernel Hilbert Spaces (RKHS) by proposing new, improved, estimators for the distributional embeddings. These improved estimators are inspired by doubly robust estimators of the causal mean, using a similar form within the kernel space. We analyse these estimators, proving they retain the doubly robust property and have improved convergence rates compared to the original estimators. This leads to new permutation based tests for distributional causal effects, using the estimators we propose as tests statistics. We experimentally and theoretically demonstrate the validity of our tests.

We consider the problem of testing whether a single coefficient is equal to zero in fixed-design linear models under a moderately high-dimensional regime, where the dimension of covariates $p$ is allowed to be in the same order of magnitude as sample size $n$. In this regime, to achieve finite-population validity, existing methods usually require strong distributional assumptions on the noise vector (such as Gaussian or rotationally invariant), which limits their applications in practice. In this paper, we propose a new method, called residual permutation test (RPT), which is constructed by projecting the regression residuals onto the space orthogonal to the union of the column spaces of the original and permuted design matrices. RPT can be proved to achieve finite-population size validity under fixed design with just exchangeable noises, whenever $p < n / 2$. Moreover, RPT is shown to be asymptotically powerful for heavy tailed noises with bounded $(1+t)$-th order moment when the true coefficient is at least of order $n^{-t/(1+t)}$ for $t \in [0,1]$. We further proved that this signal size requirement is essentially rate-optimal in the minimax sense. Numerical studies confirm that RPT performs well in a wide range of simulation settings with normal and heavy-tailed noise distributions.

As the complexity of System-on-Chip (SoC) designs continues to increase, ensuring thorough verification becomes a significant challenge for system integrators. The complexity of verification can result in undetected bugs. Unlike software or firmware bugs, hardware bugs are hard to fix after deployment and they require additional logic, i.e., patching logic integrated with the design in advance in order to patch. However, the absence of a standardized metric for defining "patchability" leaves system integrators relying on their understanding of each IP and security requirements to engineer ad hoc patching designs. In this paper, we propose a theoretical patchability quantification method to analyze designs at the Register Transfer Level (RTL) with provided patching options. Our quantification defines patchability as a combination of observability and controllability so that we can analyze and compare the patchability of IP variations. This quantification is a systematic approach to estimate each patching architecture's ability to patch at run-time and complements existing patching works. In experiments, we compare several design options of the same patching architecture and discuss their differences in terms of theoretical patchability and how many potential weaknesses can be mitigated.

Recently, large-scale pre-trained vision-language models have presented benefits for alleviating class imbalance in long-tailed recognition. However, the long-tailed data distribution can corrupt the representation space, where the distance between head and tail categories is much larger than the distance between two tail categories. This uneven feature space distribution causes the model to exhibit unclear and inseparable decision boundaries on the uniformly distributed test set, which lowers its performance. To address these challenges, we propose the uniformly category prototype-guided vision-language framework to effectively mitigate feature space bias caused by data imbalance. Especially, we generate a set of category prototypes uniformly distributed on a hypersphere. Category prototype-guided mechanism for image-text matching makes the features of different classes converge to these distinct and uniformly distributed category prototypes, which maintain a uniform distribution in the feature space, and improve class boundaries. Additionally, our proposed irrelevant text filtering and attribute enhancement module allows the model to ignore irrelevant noisy text and focus more on key attribute information, thereby enhancing the robustness of our framework. In the image recognition fine-tuning stage, to address the positive bias problem of the learnable classifier, we design the class feature prototype-guided classifier, which compensates for the performance of tail classes while maintaining the performance of head classes. Our method outperforms previous vision-language methods for long-tailed learning work by a large margin and achieves state-of-the-art performance.

Controlling chatbot utterance generation with multiple attributes such as personalities, emotions and dialogue acts is a practically useful but under-studied problem. We propose a novel framework called DASC that possesses strong controllability with a weighted decoding paradigm, while improving generation quality with the grounding in an attribute semantics space. Generation with multiple attributes is then intuitively implemented with an interpolation of multiple attribute embeddings, which results in substantial reduction in the model sizes. Experiments show that DASC can achieve high control accuracy in generation task with the simultaneous control of 3 aspects while also producing interesting and reasonably sensible responses, even in an out-of-distribution robustness test.

Grasping occluded objects in cluttered environments is an essential component in complex robotic manipulation tasks. In this paper, we introduce an AffordanCE-driven Next-Best-View planning policy (ACE-NBV) that tries to find a feasible grasp for target object via continuously observing scenes from new viewpoints. This policy is motivated by the observation that the grasp affordances of an occluded object can be better-measured under the view when the view-direction are the same as the grasp view. Specifically, our method leverages the paradigm of novel view imagery to predict the grasps affordances under previously unobserved view, and select next observation view based on the highest imagined grasp quality of the target object. The experimental results in simulation and on a real robot demonstrate the effectiveness of the proposed affordance-driven next-best-view planning policy. Project page: //sszxc.net/ace-nbv/.

Current methods for few-shot action recognition mainly fall into the metric learning framework following ProtoNet, which demonstrates the importance of prototypes. Although they achieve relatively good performance, the effect of multimodal information is ignored, e.g. label texts. In this work, we propose a novel MultimOdal PRototype-ENhanced Network (MORN), which uses the semantic information of label texts as multimodal information to enhance prototypes. A CLIP visual encoder and a frozen CLIP text encoder are introduced to obtain features with good multimodal initialization. Then in the visual flow, visual prototypes are computed by a Temporal-Relational CrossTransformer (TRX) module for example. In the text flow, a semantic-enhanced (SE) module and an inflating operation are used to obtain text prototypes. The final multimodal prototypes are then computed by a multimodal prototype-enhanced (MPE) module. Besides, we define a PRototype SImilarity DiffErence (PRIDE) to evaluate the quality of prototypes, which is used to verify our improvement on the prototype level and effectiveness of MORN. We conduct extensive experiments on four popular datasets, and MORN achieves state-of-the-art results on HMDB51, UCF101, Kinetics and SSv2. When plugging PRIDE into the training stage, the performance can be further improved.

We present a semi-infinite program (SIP) solver for trajectory optimizations of general articulated robots. These problems are more challenging than standard Nonlinear Program (NLP) by involving an infinite number of non-convex, collision constraints. Prior SIP solvers based on constraint sampling cannot guarantee the satisfaction of all constraints. Instead, our method uses a conservative bound on articulated body motions to ensure the solution feasibility throughout the optimization procedure. We further use subdivision to adaptively reduce the error in conservative motion estimation. Combined, we prove that our SIP solver guarantees feasibility while approaches the critical point of SIP problems up to arbitrary user-provided precision. We have verified our method on a row of trajectory optimization problems involving industrial robot arms and UAVs, where our method can generate collision-free, locally optimal trajectories within a couple minutes.

Advancement in the field of machine learning is unavoidable, but something of major concern is preserving the privacy of the users whose data is being used for training these machine learning algorithms. Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner which enables one to collaborate and train a global model without sharing local data. But starting this learning process on each device in the right way, called ``model initialization" is critical. The choice of initialization methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems, etc. In this survey, we dive deeper into a comprehensive study of various ways of model initialization techniques in FL.Unlike other studies, our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios. We highlight how factors like client variability, data non-IIDness, model caliber, security considerations, and network restrictions influence FL model outcomes and propose how strategic initialization can address and potentially rectify many such challenges. The motivation behind this survey is to highlight that the right start can help overcome challenges like varying data quality, security issues, and network problems. Our insights provide a foundational base for experts looking to fully utilize FL, also while understanding the complexities of model initialization.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

北京阿比特科技有限公司