Sharpness-Aware Minimization (SAM) is a recent optimization framework aiming to improve the deep neural network generalization, through obtaining flatter (i.e. less sharp) solutions. As SAM has been numerically successful, recent papers have studied the theoretical aspects of the framework and have shown SAM solutions are indeed flat. However, there has been limited theoretical exploration regarding statistical properties of SAM. In this work, we directly study the statistical performance of SAM, and present a new theoretical explanation of why SAM generalizes well. To this end, we study two statistical problems, neural networks with a hidden layer and kernel regression, and prove under certain conditions, SAM has smaller prediction error over Gradient Descent (GD). Our results concern both convex and non-convex settings, and show that SAM is particularly well-suited for non-convex problems. Additionally, we prove that in our setup, SAM solutions are less sharp as well, showing our results are in agreement with the previous work. Our theoretical findings are validated using numerical experiments on numerous scenarios, including deep neural networks.
Neural networks, being susceptible to adversarial attacks, should face a strict level of scrutiny before being deployed in critical or adversarial applications. This paper uses ideas from Chaos Theory to explain, analyze, and quantify the degree to which neural networks are susceptible to or robust against adversarial attacks. To this end, we present a new metric, the "susceptibility ratio," given by $\hat \Psi(h, \theta)$, which captures how greatly a model's output will be changed by perturbations to a given input. Our results show that susceptibility to attack grows significantly with the depth of the model, which has safety implications for the design of neural networks for production environments. We provide experimental evidence of the relationship between $\hat \Psi$ and the post-attack accuracy of classification models, as well as a discussion of its application to tasks lacking hard decision boundaries. We also demonstrate how to quickly and easily approximate the certified robustness radii for extremely large models, which until now has been computationally infeasible to calculate directly.
Flatness of the loss curve around a model at hand has been shown to empirically correlate with its generalization ability. Optimizing for flatness has been proposed as early as 1994 by Hochreiter and Schmidthuber, and was followed by more recent successful sharpness-aware optimization techniques. Their widespread adoption in practice, though, is dubious because of the lack of theoretically grounded connection between flatness and generalization, in particular in light of the reparameterization curse - certain reparameterizations of a neural network change most flatness measures but do not change generalization. Recent theoretical work suggests that a particular relative flatness measure can be connected to generalization and solves the reparameterization curse. In this paper, we derive a regularizer based on this relative flatness that is easy to compute, fast, efficient, and works with arbitrary loss functions. It requires computing the Hessian only of a single layer of the network, which makes it applicable to large neural networks, and with it avoids an expensive mapping of the loss surface in the vicinity of the model. In an extensive empirical evaluation we show that this relative flatness aware minimization (FAM) improves generalization in a multitude of applications and models, both in finetuning and standard training. We make the code available at github.
Although being a crucial question for the development of machine learning algorithms, there is still no consensus on how to compare classifiers over multiple data sets with respect to several criteria. Every comparison framework is confronted with (at least) three fundamental challenges: the multiplicity of quality criteria, the multiplicity of data sets and the randomness of the selection of data sets. In this paper, we add a fresh view to the vivid debate by adopting recent developments in decision theory. Based on so-called preference systems, our framework ranks classifiers by a generalized concept of stochastic dominance, which powerfully circumvents the cumbersome, and often even self-contradictory, reliance on aggregates. Moreover, we show that generalized stochastic dominance can be operationalized by solving easy-to-handle linear programs and moreover statistically tested employing an adapted two-sample observation-randomization test. This yields indeed a powerful framework for the statistical comparison of classifiers over multiple data sets with respect to multiple quality criteria simultaneously. We illustrate and investigate our framework in a simulation study and with a set of standard benchmark data sets.
Results of simulation studies evaluating the performance of statistical methods are often considered actionable and thus can have a major impact on the way empirical research is implemented. However, so far there is limited evidence about the reproducibility and replicability of statistical simulation studies. Therefore, eight highly cited statistical simulation studies were selected, and their replicability was assessed by teams of replicators with formal training in quantitative methodology. The teams found relevant information in the original publications and used it to write simulation code with the aim of replicating the results. The primary outcome was the feasibility of replicability based on reported information in the original publications. Replicability varied greatly: Some original studies provided detailed information leading to almost perfect replication of results, whereas other studies did not provide enough information to implement any of the reported simulations. Replicators had to make choices regarding missing or ambiguous information in the original studies, error handling, and software environment. Factors facilitating replication included public availability of code, and descriptions of the data-generating procedure and methods in graphs, formulas, structured text, and publicly accessible additional resources such as technical reports. Replicability of statistical simulation studies was mainly impeded by lack of information and sustainability of information sources. Reproducibility could be achieved for simulation studies by providing open code and data as a supplement to the publication. Additionally, simulation studies should be transparently reported with all relevant information either in the research paper itself or in easily accessible supplementary material to allow for replicability.
Algorithm- and data-dependent generalization bounds are required to explain the generalization behavior of modern machine learning algorithms. In this context, there exists information theoretic generalization bounds that involve (various forms of) mutual information, as well as bounds based on hypothesis set stability. We propose a conceptually related, but technically distinct complexity measure to control generalization error, which is the empirical Rademacher complexity of an algorithm- and data-dependent hypothesis class. Combining standard properties of Rademacher complexity with the convenient structure of this class, we are able to (i) obtain novel bounds based on the finite fractal dimension, which (a) extend previous fractal dimension-type bounds from continuous to finite hypothesis classes, and (b) avoid a mutual information term that was required in prior work; (ii) we greatly simplify the proof of a recent dimension-independent generalization bound for stochastic gradient descent; and (iii) we easily recover results for VC classes and compression schemes, similar to approaches based on conditional mutual information.
Artificial intelligence (AI) and Machine Learning (ML) are considered as key enablers for realizing the full potential of fifth-generation (5G) and beyond mobile networks, particularly in the context of resource management and orchestration. In this demonstration, we consider a fully-fledged 5G mobile network and develop a multi-agent deep reinforcement learning (DRL) framework for RAN resource allocation. By leveraging local monitoring information generated by a shared gNodeB instance (gNB), each DRL agent aims to optimally allocate radio resources concerning service-specific traffic demands belonging to heterogeneous running services. We perform experiments on the deployed testbed in real-time, showing that DRL-based agents can allocate radio resources fairly while improving the overall efficiency of resource utilization and minimizing the risk of over provisioning.
Multi armed bandit (MAB) algorithms have been increasingly used to complement or integrate with A/B tests and randomized clinical trials in e-commerce, healthcare, and policymaking. Recent developments incorporate possible delayed feedback. While existing MAB literature often focuses on maximizing the expected cumulative reward outcomes (or, equivalently, regret minimization), few efforts have been devoted to establish valid statistical inference approaches to quantify the uncertainty of learned policies. We attempt to fill this gap by providing a unified statistical inference framework for policy evaluation where a target policy is allowed to differ from the data collecting policy, and our framework allows delay to be associated with the treatment arms. We present an adaptively weighted estimator that on one hand incorporates the arm-dependent delaying mechanism to achieve consistency, and on the other hand mitigates the variance inflation across stages due to vanishing sampling probability. In particular, our estimator does not critically depend on the ability to estimate the unknown delay mechanism. Under appropriate conditions, we prove that our estimator converges to a normal distribution as the number of time points goes to infinity, which provides guarantees for large-sample statistical inference. We illustrate the finite-sample performance of our approach through Monte Carlo experiments.
The volume function V(t) of a compact set S\in R^d is just the Lebesgue measure of the set of points within a distance to S not larger than t. According to some classical results in geometric measure theory, the volume function turns out to be a polynomial, at least in a finite interval, under a quite intuitive, easy to interpret, sufficient condition (called ``positive reach'') which can be seen as an extension of the notion of convexity. However, many other simple sets, not fulfilling the positive reach condition, have also a polynomial volume function. To our knowledge, there is no general, simple geometric description of such sets. Still, the polynomial character of $V(t)$ has some relevant consequences since the polynomial coefficients carry some useful geometric information. In particular, the constant term is the volume of S and the first order coefficient is the boundary measure (in Minkowski's sense). This paper is focused on sets whose volume function is polynomial on some interval starting at zero, whose length (that we call ``polynomial reach'') might be unknown. Our main goal is to approximate such polynomial reach by statistical means, using only a large enough random sample of points inside S. The practical motivation is simple: when the value of the polynomial reach , or rather a lower bound for it, is approximately known, the polynomial coefficients can be estimated from the sample points by using standard methods in polynomial approximation. As a result, we get a quite general method to estimate the volume and boundary measure of the set, relying only on an inner sample of points and not requiring the use any smoothing parameter. This paper explores the theoretical and practical aspects of this idea.
This paper focuses on optimal beamforming to maximize the mean signal-to-noise ratio (SNR) for a reconfigurable intelligent surface (RIS)-aided MISO downlink system under correlated Rician fading. The beamforming problem becomes non-convex because of the unit modulus constraint of passive RIS elements. To tackle this, we propose a semidefinite relaxation-based iterative algorithm for obtaining statistically optimal transmit beamforming vector and RIS-phase shift matrix. Further, we analyze the outage probability (OP) and ergodic capacity (EC) to measure the performance of the proposed beamforming scheme. Just like the existing works, the OP and EC evaluations rely on the numerical computation of the iterative algorithm, which does not clearly reveal the functional dependence of system performance on key parameters. Therefore, we derive closed-form expressions for the optimal beamforming vector and phase shift matrix along with their OP performance for special cases of the general setup. Our analysis reveals that the i.i.d. fading is more beneficial than the correlated case in the presence of LoS components. This fact is analytically established for the setting in which the LoS is blocked. Furthermore, we demonstrate that the maximum mean SNR improves linearly/quadratically with the number of RIS elements in the absence/presence of LoS component under i.i.d. fading.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.