亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies the impact of bootstrap procedure on the eigenvalue distributions of the sample covariance matrix under a high-dimensional factor structure. We provide asymptotic distributions for the top eigenvalues of bootstrapped sample covariance matrix under mild conditions. After bootstrap, the spiked eigenvalues which are driven by common factors will converge weakly to Gaussian limits after proper scaling and centralization. However, the largest non-spiked eigenvalue is mainly determined by the order statistics of the bootstrap resampling weights, and follows extreme value distribution. Based on the disparate behavior of the spiked and non-spiked eigenvalues, we propose innovative methods to test the number of common factors. Indicated by extensive numerical and empirical studies, the proposed methods perform reliably and convincingly under the existence of both weak factors and cross-sectionally correlated errors. Our technical details contribute to random matrix theory on spiked covariance model with convexly decaying density and unbounded support, or with general elliptical distributions.

相關內容

Dynamic crack branching in unsaturated porous media holds significant relevance in various fields, including geotechnical engineering, geosciences, and petroleum engineering. This article presents a numerical investigation into dynamic crack branching in unsaturated porous media using a recently developed coupled micro-periporomechanics paradigm. This paradigm extends the periporomechanics model by incorporating the micro-rotation of the solid skeleton. Within this framework, each material point is equipped with three degrees of freedom: displacement, micro-rotation, and fluid pressure. Consistent with the Cosserat continuum theory, a length scale associated with the micro-rotation of material points is inherently integrated into the model. This study encompasses several key aspects: (1) Validation of the coupled micro-periporomechanics paradigm for effectively modeling crack branching in deformable porous media, (2) Examination of the transition from a single branch to multiple branches in porous media under drained conditions, (3) Simulation of single crack branching in unsaturated porous media under dynamic loading conditions, and (4) Investigation of multiple crack branching in unsaturated porous media under dynamic loading conditions. The numerical results obtained in this study are systematically analyzed to elucidate the factors that influence dynamic crack branching in porous media subjected to dynamic loading. Furthermore, the comprehensive numerical findings underscore the efficacy and robustness of the coupled micro-periporomechanics paradigm in accurately modeling dynamic crack branching in variably saturated porous media.

A general theory of efficient estimation for ergodic diffusion processes sampled at high frequency with an infinite time horizon is presented. High frequency sampling is common in many applications, with finance as a prominent example. The theory is formulated in term of approximate martingale estimating functions and covers a large class of estimators including most of the previously proposed estimators for diffusion processes. Easily checked conditions ensuring that an estimating function is an approximate martingale are derived, and general conditions ensuring consistency and asymptotic normality of estimators are given. Most importantly, simple conditions are given that ensure rate optimality and efficiency. Rate optimal estimators of parameters in the diffusion coefficient converge faster than estimators of drift coefficient parameters because they take advantage of the information in the quadratic variation. The conditions facilitate the choice among the multitude of estimators that have been proposed for diffusion models. Optimal martingale estimating functions in the sense of Godambe and Heyde and their high frequency approximations are, under weak conditions, shown to satisfy the conditions for rate optimality and efficiency. This provides a natural feasible method of constructing explicit rate optimal and efficient estimating functions by solving a linear equation.

Utilizing massive web-scale datasets has led to unprecedented performance gains in machine learning models, but also imposes outlandish compute requirements for their training. In order to improve training and data efficiency, we here push the limits of pruning large-scale multimodal datasets for training CLIP-style models. Today's most effective pruning method on ImageNet clusters data samples into separate concepts according to their embedding and prunes away the most prototypical samples. We scale this approach to LAION and improve it by noting that the pruning rate should be concept-specific and adapted to the complexity of the concept. Using a simple and intuitive complexity measure, we are able to reduce the training cost to a quarter of regular training. By filtering from the LAION dataset, we find that training on a smaller set of high-quality data can lead to higher performance with significantly lower training costs. More specifically, we are able to outperform the LAION-trained OpenCLIP-ViT-B32 model on ImageNet zero-shot accuracy by 1.1p.p. while only using 27.7% of the data and training compute. Despite a strong reduction in training cost, we also see improvements on ImageNet dist. shifts, retrieval tasks and VTAB. On the DataComp Medium benchmark, we achieve a new state-of-the-art ImageNet zero-shot accuracy and a competitive average zero-shot accuracy on 38 evaluation tasks.

The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic spectral distribution of matrices $A_n$ arising from numerical discretizations of differential equations. Indeed, when the mesh fineness parameter $n$ tends to infinity, these matrices $A_n$ give rise to a sequence $\{A_n\}_n$, which often turns out to be a GLT sequence. In this paper, we extend the theory of GLT sequences in several directions: we show that every GLT sequence enjoys a normal form, we identify the spectral symbol of every GLT sequence formed by normal matrices, and we prove that, for every GLT sequence $\{A_n\}_n$ formed by normal matrices and every continuous function $f:\mathbb C\to\mathbb C$, the sequence $\{f(A_n)\}_n$ is again a GLT sequence whose spectral symbol is $f(\kappa)$, where $\kappa$ is the spectral symbol of $\{A_n\}_n$. In addition, using the theory of GLT sequences, we prove a spectral distribution result for perturbed normal matrices.

In designing external validation studies of clinical prediction models, contemporary sample size calculation methods are based on the frequentist inferential paradigm. One of the widely reported metrics of model performance is net benefit (NB), and the relevance of conventional inference around NB as a measure of clinical utility is doubtful. Value of Information methodology quantifies the consequences of uncertainty in terms of its impact on clinical utility of decisions. We introduce the expected value of sample information (EVSI) for validation as the expected gain in NB from conducting an external validation study of a given size. We propose algorithms for EVSI computation, and in a case study demonstrate how EVSI changes as a function of the amount of current information and future study's sample size. Value of Information methodology provides a decision-theoretic lens to the process of planning a validation study of a risk prediction model and can complement conventional methods when designing such studies.

In the present paper, we propose a block variant of the extended Hessenberg process for computing approximations of matrix functions and other problems producing large-scale matrices. Applications to the computation of a matrix function such as f(A)V, where A is an nxn large sparse matrix, V is an nxp block with p<<n, and f is a function are presented. Solving shifted linear systems with multiple right hand sides are also given. Computing approximations of these matrix problems appear in many scientific and engineering applications. Different numerical experiments are provided to show the effectiveness of the proposed method for these problems.

The homogenization of elliptic divergence-type fourth-order operators with periodic coefficients is studied in a (periodic) domain. The aim is to find an operator with constant coefficients and represent the equation through a perturbation around this operator. The resolvent is found as $L^2 \to L^2$ operator using the Neumann series for the periodic fundamental solution of biharmonic operator. Results are based on some auxiliary Lemmas suggested by Bensoussan in 1986, Zhikov in 1991, Yu. Grabovsky and G. Milton in 1998, Pastukhova in 2016. Operators of the type considered in the paper appear in the study of the elastic properties of thin plates. The choice of the operator with constant coefficients is discussed separately and chosen in an optimal way w.r.t. the spectral radius and convergence of the Neumann series and uses the known bounds for ''homogenized'' coefficients. Similar ideas are usually applied for the construction of preconditioners for iterative solvers for finite dimensional problems resulting from discretized PDEs. The method presented is similar to Cholesky factorization transferred to elliptic operators (as in references mentioned above). Furthermore, the method can be applied to non-linear problems.

This paper proposes several approaches as baselines to compute a shared active subspace for multivariate vector-valued functions. The goal is to minimize the deviation between the function evaluations on the original space and those on the reconstructed one. This is done either by manipulating the gradients or the symmetric positive (semi-)definite (SPD) matrices computed from the gradients of each component function so as to get a single structure common to all component functions. These approaches can be applied to any data irrespective of the underlying distribution unlike the existing vector-valued approach that is constrained to a normal distribution. We test the effectiveness of these methods on five optimization problems. The experiments show that, in general, the SPD-level methods are superior to the gradient-level ones, and are close to the vector-valued approach in the case of a normal distribution. Interestingly, in most cases it suffices to take the sum of the SPD matrices to identify the best shared active subspace.

This paper explores an iterative coupling approach to solve linear thermo-poroelasticity problems, with its application as a high-fidelity discretization utilizing finite elements during the training of projection-based reduced order models. One of the main challenges in addressing coupled multi-physics problems is the complexity and computational expenses involved. In this study, we introduce a decoupled iterative solution approach, integrated with reduced order modeling, aimed at augmenting the efficiency of the computational algorithm. The iterative coupling technique we employ builds upon the established fixed-stress splitting scheme that has been extensively investigated for Biot's poroelasticity. By leveraging solutions derived from this coupled iterative scheme, the reduced order model employs an additional Galerkin projection onto a reduced basis space formed by a small number of modes obtained through proper orthogonal decomposition. The effectiveness of the proposed algorithm is demonstrated through numerical experiments, showcasing its computational prowess.

Linear codes are widely studied in coding theory as they have nice applications in distributed storage, combinatorics, lattices, cryptography and so on. Constructing linear codes with desirable properties is an interesting research topic. In this paper, based on the augmentation technique, we present two families of linear codes from some functions over finite fields. The first family of linear codes is constructed from monomial functions over finite fields. The locality of them is determined and the weight distributions of two subfamilies of the codes are also given. An infinite family of locally recoverable codes which are at least almost optimal and some optimal recoverable codes are obtained from the linear codes. In particular, the two subfamilies of the codes are proved to be both optimally or almost optimally extendable and self-orthogonal. The second family of linear codes is constructed from weakly regular bent functions over finite fields and their weight distribution is determined. This family of codes is proved to have locality 3 for some cases and is conjectured to have locality 2 for other cases. Particularly, two families of optimal locally recoverable codes are derived from the linear codes. Besides, this family of codes is also proved to be both optimally or almost optimally extendable and self-orthogonal.

北京阿比特科技有限公司