亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Rollback recovery strategies are well-known in concurrent and distributed systems. In this context, recovering from unexpected failures is even more relevant given the non-deterministic nature of execution, which means that it is practically impossible to foresee all possible process interactions. In this work, we consider a message-passing concurrent programming language where processes interact through message sending and receiving, but shared memory is not allowed. In this context, we design a checkpoint-based rollback recovery strategy that does not need a central coordination. For this purpose, we extend the language with three new operators: check, commit, and rollback. Furthermore, our approach is purely asynchronous, which is an essential ingredient to developing a source-to-source program instrumentation implementing a rollback recovery strategy.

相關內容

Processing 是一門開源編程語(yu)言和與之(zhi)配套的(de)集成開發環境(IDE)的(de)名稱(cheng)。Processing 在電子(zi)藝(yi)(yi)術和視覺設計社(she)區被(bei)用來教授編程基(ji)礎,并運用于大量(liang)的(de)新媒體和互(hu)動藝(yi)(yi)術作品中。

Systolic arrays and shared L1-memory manycore clusters are commonly used architectural paradigms that offer different trade-offs to accelerate parallel workloads. While the first excel with regular dataflow at the cost of rigid architectures and complex programming models, the second are versatile and easy to program but require explicit data flow management and synchronization. This work aims at enabling efficient systolic execution on shared L1-memory manycore clusters. We devise a flexible architecture where small and energy-efficient RISC-V cores act as the systolic array's processing elements (PEs) and can form diverse, reconfigurable systolic topologies through queues mapped in the cluster's shared memory. We introduce two low-overhead RISC-V ISA extensions for efficient systolic execution, namely Xqueue and Queue-linked registers (QLRs), which support queue management in hardware. The Xqueue extension enables single-instruction access to shared-memory-mapped queues, while QLRs allow implicit and autonomous access to them, relieving the cores of explicit communication instructions. We demonstrate Xqueue and QLRs in MemPool, an open-source manycore cluster with 256 PEs, and analyze the hybrid systolic-shared-memory architecture's trade-offs on matrix multiplication, convolution, and FFT kernels. For an area increase of just 6%, our hybrid architecture almost doubles MemPool's compute unit utilization to up to 95% and significantly improves energy efficiency, achieving up to 63% of power spent in the PEs. In typical conditions (TT/0.80V/25{\deg}C) in a 22nm FDX technology, our hybrid architecture runs at 600MHz with no frequency degradation and is up to 64% more energy efficient than the shared-memory baseline, achieving up to 208GOPS/W.

Datalog is a popular and widely-used declarative logic programming language. Datalog engines apply many cross-rule optimizations; bugs in them can cause incorrect results. To detect such optimization bugs, we propose an automated testing approach called Incremental Rule Evaluation (IRE), which synergistically tackles the test oracle and test case generation problem. The core idea behind the test oracle is to compare the results of an optimized program and a program without cross-rule optimization; any difference indicates a bug in the Datalog engine. Our core insight is that, for an optimized, incrementally-generated Datalog program, we can evaluate all rules individually by constructing a reference program to disable the optimizations that are performed among multiple rules. Incrementally generating test cases not only allows us to apply the test oracle for every new rule generated-we also can ensure that every newly added rule generates a non-empty result with a given probability and eschew recomputing already-known facts. We implemented IRE as a tool named Deopt, and evaluated Deopt on four mature Datalog engines, namely Souffl\'e, CozoDB, $\mu$Z, and DDlog, and discovered a total of 30 bugs. Of these, 13 were logic bugs, while the remaining were crash and error bugs. Deopt can detect all bugs found by queryFuzz, a state-of-the-art approach. Out of the bugs identified by Deopt, queryFuzz might be unable to detect 5. Our incremental test case generation approach is efficient; for example, for test cases containing 60 rules, our incremental approach can produce 1.17$\times$ (for DDlog) to 31.02$\times$ (for Souffl\'e) as many valid test cases with non-empty results as the naive random method. We believe that the simplicity and the generality of the approach will lead to its wide adoption in practice.

In this study, we have shown autonomous long-term prediction with a spintronic physical reservoir. Due to the short-term memory property of the magnetization dynamics, non-linearity arises in the reservoir states which could be used for long-term prediction tasks using simple linear regression for online training. During the prediction stage, the output is directly fed to the input of the reservoir for autonomous prediction. We employ our proposed reservoir for the modeling of the chaotic time series such as Mackey-Glass and dynamic time-series data, such as household building energy loads. Since only the last layer of a RC needs to be trained with linear regression, it is well suited for learning in real time on edge devices. Here we show that a skyrmion based magnetic tunnel junction can potentially be used as a prototypical RC but any nanomagnetic magnetic tunnel junction with nonlinear magnetization behavior can implement such a RC. By comparing our spintronic physical RC approach with energy load forecasting algorithms, such as LSTMs and RNNs, we conclude that the proposed framework presents good performance in achieving high predictions accuracy, while also requiring low memory and energy both of which are at a premium in hardware resource and power constrained edge applications. Further, the proposed approach is shown to require very small training datasets and at the same time being at least 16X energy efficient compared to the sequence to sequence LSTM for accurate household load predictions.

Over the past decade, there has been a remarkable surge in utilizing quadrotors for various purposes due to their simple structure and aggressive maneuverability, such as search and rescue, delivery and autonomous drone racing, etc. One of the key challenges preventing quadrotors from being widely used in these scenarios is online waypoint-constrained time-optimal trajectory generation and control technique. This letter proposes an imitation learning-based online solution to efficiently navigate the quadrotor through multiple waypoints with time-optimal performance. The neural networks (WN&CNets) are trained to learn the control law from the dataset generated by the time-consuming CPC algorithm and then deployed to generate the optimal control commands online to guide the quadrotors. To address the challenge of limited training data and the hover maneuver at the final waypoint, we propose a transition phase strategy that utilizes polynomials to help the quadrotor 'jump over' the stop-and-go maneuver when switching waypoints. Our method is demonstrated in both simulation and real-world experiments, achieving a maximum speed of 7 m/s while navigating through 7 waypoints in a confined space of 6.0 m * 4.0 m * 2.0 m. The results show that with a slight loss in optimality, the WN&CNets significantly reduce the processing time and enable online optimal control for multiple-waypoint-constrained flight tasks.

Building a single universal speech enhancement (SE) system that can handle arbitrary input is a demanded but underexplored research topic. Towards this ultimate goal, one direction is to build a single model that handles diverse audio duration, sampling frequencies, and microphone variations in noisy and reverberant scenarios, which we define here as "input condition invariant SE". Such a model was recently proposed showing promising performance; however, its multi-channel performance degraded severely in real conditions. In this paper we propose novel architectures to improve the input condition invariant SE model so that performance in simulated conditions remains competitive while real condition degradation is much mitigated. For this purpose, we redesign the key components that comprise such a system. First, we identify that the channel-modeling module's generalization to unseen scenarios can be sub-optimal and redesign this module. We further introduce a two-stage training strategy to enhance training efficiency. Second, we propose two novel dual-path time-frequency blocks, demonstrating superior performance with fewer parameters and computational costs compared to the existing method. All proposals combined, experiments on various public datasets validate the efficacy of the proposed model, with significantly improved performance on real conditions. Recipe with full model details is released at //github.com/espnet/espnet.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Graph classification aims to perform accurate information extraction and classification over graphstructured data. In the past few years, Graph Neural Networks (GNNs) have achieved satisfactory performance on graph classification tasks. However, most GNNs based methods focus on designing graph convolutional operations and graph pooling operations, overlooking that collecting or labeling graph-structured data is more difficult than grid-based data. We utilize meta-learning for fewshot graph classification to alleviate the scarce of labeled graph samples when training new tasks.More specifically, to boost the learning of graph classification tasks, we leverage GNNs as graph embedding backbone and meta-learning as training paradigm to capture task-specific knowledge rapidly in graph classification tasks and transfer them to new tasks. To enhance the robustness of meta-learner, we designed a novel step controller driven by Reinforcement Learning. The experiments demonstrate that our framework works well compared to baselines.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司