We study the problem of designing consistent sequential one- and two-sample tests in a nonparametric setting. Guided by the principle of \emph{testing by betting}, we reframe the task of constructing sequential tests into that of selecting payoff functions that maximize the wealth of a fictitious bettor, betting against the null in a repeated game. The resulting sequential test rejects the null when the bettor's wealth process exceeds an appropriate threshold. We propose a general strategy for selecting payoff functions as predictable estimates of the \emph{witness function} associated with the variational representation of some statistical distance measures, such as integral probability metrics~(IPMs) and $\varphi$-divergences. Overall, this approach ensures that (i) the wealth process is a non-negative martingale under the null, thus allowing tight control over the type-I error, and (ii) it grows to infinity almost surely under the alternative, thus implying consistency. We accomplish this by designing composite e-processes that remain bounded in expectation under the null, but grow to infinity under the alternative. We instantiate the general test for some common distance metrics to obtain sequential versions of Kolmogorov-Smirnov~(KS) test, $\chi^2$-test and kernel-MMD test, and empirically demonstrate their ability to adapt to the unknown hardness of the problem. The sequential testing framework constructed in this paper is versatile, and we end with a discussion on applying these ideas to two related problems: testing for higher-order stochastic dominance, and testing for symmetry.
A short, information-theoretic proof of the Kac--Bernstein theorem, which is stated as follows, is presented: For any independent random variables $X$ and $Y$, if $X+Y$ and $X-Y$ are independent, then $X$ and $Y$ are normally distributed.
There is a growing interest in the estimation of the number of unseen features, mostly driven by biological applications. A recent work brought out a peculiar property of the popular completely random measures (CRMs) as prior models in Bayesian nonparametric (BNP) inference for the unseen-features problem: for fixed prior's parameters, they all lead to a Poisson posterior distribution for the number of unseen features, which depends on the sampling information only through the sample size. CRMs are thus not a flexible prior model for the unseen-features problem and, while the Poisson posterior distribution may be appealing for analytical tractability and ease of interpretability, its independence from the sampling information makes the BNP approach a questionable oversimplification, with posterior inferences being completely determined by the estimation of unknown prior's parameters. In this paper, we introduce the stable-Beta scaled process (SB-SP) prior, and we show that it allows to enrich the posterior distribution of the number of unseen features arising under CRM priors, while maintaining its analytical tractability and interpretability. That is, the SB-SP prior leads to a negative Binomial posterior distribution, which depends on the sampling information through the sample size and the number of distinct features, with corresponding estimates being simple, linear in the sampling information and computationally efficient. We apply our BNP approach to synthetic data and to real cancer genomic data, showing that: i) it outperforms the most popular parametric and nonparametric competitors in terms of estimation accuracy; ii) it provides improved coverage for the estimation with respect to a BNP approach under CRM priors.
The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesised with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the statistical finite element method demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the Wasserstein-2 distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which test the robustness of StatFEM when extended to nonlinear quantities of interest.
Consider supervised learning from i.i.d. samples $\{{\boldsymbol x}_i,y_i\}_{i\le n}$ where ${\boldsymbol x}_i \in\mathbb{R}^p$ are feature vectors and ${y} \in \mathbb{R}$ are labels. We study empirical risk minimization over a class of functions that are parameterized by $\mathsf{k} = O(1)$ vectors ${\boldsymbol \theta}_1, . . . , {\boldsymbol \theta}_{\mathsf k} \in \mathbb{R}^p$ , and prove universality results both for the training and test error. Namely, under the proportional asymptotics $n,p\to\infty$, with $n/p = \Theta(1)$, we prove that the training error depends on the random features distribution only through its covariance structure. Further, we prove that the minimum test error over near-empirical risk minimizers enjoys similar universality properties. In particular, the asymptotics of these quantities can be computed $-$to leading order$-$ under a simpler model in which the feature vectors ${\boldsymbol x}_i$ are replaced by Gaussian vectors ${\boldsymbol g}_i$ with the same covariance. Earlier universality results were limited to strongly convex learning procedures, or to feature vectors ${\boldsymbol x}_i$ with independent entries. Our results do not make any of these assumptions. Our assumptions are general enough to include feature vectors ${\boldsymbol x}_i$ that are produced by randomized featurization maps. In particular we explicitly check the assumptions for certain random features models (computing the output of a one-layer neural network with random weights) and neural tangent models (first-order Taylor approximation of two-layer networks).
Consider the problem of nonparametric estimation of an unknown $\beta$-H\"older smooth density $p_{XY}$ at a given point, where $X$ and $Y$ are both $d$ dimensional. An infinite sequence of i.i.d.\ samples $(X_i,Y_i)$ are generated according to this distribution, and two terminals observe $(X_i)$ and $(Y_i)$, respectively. They are allowed to exchange $k$ bits either in oneway or interactively in order for Bob to estimate the unknown density. We show that the minimax mean square risk is order $\left(\frac{k}{\log k} \right)^{-\frac{2\beta}{d+2\beta}}$ for one-way protocols and $k^{-\frac{2\beta}{d+2\beta}}$ for interactive protocols. The logarithmic improvement is nonexistent in the parametric counterparts, and therefore can be regarded as a consequence of nonparametric nature of the problem. Moreover, a few rounds of interactions achieve the interactive minimax rate: the number of rounds can grow as slowly as the super-logarithm (i.e., inverse tetration) of $k$. The proof of the upper bound is based on a novel multi-round scheme for estimating the joint distribution of a pair of biased Bernoulli variables.
This work derives methods for performing nonparametric, nonasymptotic statistical inference for population parameters under the constraint of local differential privacy (LDP). Given observations $(X_1, \dots, X_n)$ with mean $\mu^\star$ that are privatized into $(Z_1, \dots, Z_n)$, we introduce confidence intervals (CI) and time-uniform confidence sequences (CS) for $\mu^\star \in \mathbb R$ when only given access to the privatized data. We introduce a nonparametric and sequentially interactive generalization of Warner's famous "randomized response" mechanism, satisfying LDP for arbitrary bounded random variables, and then provide CIs and CSs for their means given access to the resulting privatized observations. We extend these CSs to capture time-varying (non-stationary) means, and conclude by illustrating how these methods can be used to conduct private online A/B tests.
We consider Gaussian measures $\mu, \tilde{\mu}$ on a separable Hilbert space, with fractional-order covariance operators $A^{-2\beta}$ resp. $\tilde{A}^{-2\tilde{\beta}}$, and derive necessary and sufficient conditions on $A, \tilde{A}$ and $\beta, \tilde{\beta} > 0$ for I. equivalence of the measures $\mu$ and $\tilde{\mu}$, and II. uniform asymptotic optimality of linear predictions for $\mu$ based on the misspecified measure $\tilde{\mu}$. These results hold, e.g., for Gaussian processes on compact metric spaces. As an important special case, we consider the class of generalized Whittle-Mat\'ern Gaussian random fields, where $A$ and $\tilde{A}$ are elliptic second-order differential operators, formulated on a bounded Euclidean domain $\mathcal{D}\subset\mathbb{R}^d$ and augmented with homogeneous Dirichlet boundary conditions. Our outcomes explain why the predictive performances of stationary and non-stationary models in spatial statistics often are comparable, and provide a crucial first step in deriving consistency results for parameter estimation of generalized Whittle-Mat\'ern fields.
Given a single trajectory of a dynamical system, we analyze the performance of the nonparametric least squares estimator (LSE). More precisely, we give nonasymptotic expected $l^2$-distance bounds between the LSE and the true regression function, where expectation is evaluated on a fresh, counterfactual, trajectory. We leverage recently developed information-theoretic methods to establish the optimality of the LSE for nonparametric hypotheses classes in terms of supremum norm metric entropy and a subgaussian parameter. Next, we relate this subgaussian parameter to the stability of the underlying process using notions from dynamical systems theory. When combined, these developments lead to rate-optimal error bounds that scale as $T^{-1/(2+q)}$ for suitably stable processes and hypothesis classes with metric entropy growth of order $\delta^{-q}$. Here, $T$ is the length of the observed trajectory, $\delta \in \mathbb{R}_+$ is the packing granularity and $q\in (0,2)$ is a complexity term. Finally, we specialize our results to a number of scenarios of practical interest, such as Lipschitz dynamics, generalized linear models, and dynamics described by functions in certain classes of Reproducing Kernel Hilbert Spaces (RKHS).
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.